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Abstract. We study the quasiparticle bound states of superconductor–normal-metal–super-
conductor (S–N–S) junctions using the framework of Bogoliubov–de Gennes equations. We
find that whilst the frequently employed semiclassical approximations give a good account of
the overall spectra, a rich variety of interesting details get lost in making such simplifications. In
particular, this is the case with the behaviour of states corresponding to large momenta parallel
to the interfacial planes and with bound states above the gap. We compare the spectra of the
S–N–S junction with an analogous non-superconducting semiconductor–metal–semiconductor
system and show how the new features can be understood in simple physical terms. We also
examine the limitations of using Andreev reflection alone to describe the trapping of normal-state
quasiparticles inside normal regions embedded in a superconductor.

1. Introduction

As has been known for a long time, inhomogeneities in the pairing potential1(r) of
a superconductor can give rise to bound quasiparticle states—in a manner similar to
binding by a ‘normal’U(r)-potential. Such bound states have been found theoretically in
superconducting films deposited on normal metals (de Gennes and Saint-James 1963), in the
core of a vortex line (Caroliet al 1964), in superconductor–normal-metal–superconductor
structures (Andreev 1966, Kulik 1969), and in other systems as well. Furthermore, the
contribution of the bound states is essential, e.g., for Josephson currents in mesoscopic
weak links (Bardeen and Johnson 1972, Furusaki and Tsukada 1991), for tunnelling
densities of states and current–voltage characteristics of films with superconducting surface
sheaths (K̈ummel 1977, Entin-Wohlman and Bar-Sagi 1978) and for the differential
conductance as measured by a scanning tunnelling microscope near the vortex cores of type-
II superconductors (Shoreet al 1989, Gygi and Schlüter 1991). The role played by bound
states in the transport properties of superconducting mesoscopic weak links was recently
analysed by Martı́n-Roderoet al (1994) and Levy Yeyatiet al (1995), and superconducting
ballistic point contacts were investigated by Hurd and Wendin (1994).

The Andreev reflection of quasiparticles at the normal-metal–superconductor boundary
(Andreev 1964) has been identified as the key phenomenon underlying the existence of
these bound states. However, as was noted first by Kümmel (1974), not all the bound
states in inhomogeneous superconductors can be generated in this way. Moreover, most
of the previous calculations involving bound states employed the so-called ‘Andreev’ or
‘semiclassical’ approximation (Andreev 1964, Bardeenet al 1969), which is not suited

0953-8984/96/020169+23$19.50c© 1996 IOP Publishing Ltd 169
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for investigation of quasiparticles moving rapidly in the direction parallel to the normal-
metal–superconductor interface (alternatively, in exact formulations, the movement in that
direction was suppressed altogether (Gygi and Schlüter 1991)).

Figure 1. Schematic cross-sections of the tri-layer S–N–S system investigated in this paper.
The normalU(x)-potential is zero everywhere; the thickness of the normal middle layer is 2R.
The system is uniform in theY - andZ-directions.

In this paper, we wish to throw some light on some interesting features of these bound
states. We shall go beyond the semiclassical arguments of Andreev (1964) and Bardeenet
al (1969), dispense with the simplification of Gygi and Schlüter (1991) and investigate some
basic features of the bound states generated by a well in the pairing potential1(r), using
exactsolutions of the full Bogoliubov–de Gennes (BdG) equations. To make headway, we
concentrate on the simplest case of all—a slab-like square well in1(r), as depicted in
figure 1. Previous calculations demonstrated that such a1(r) is a good approximation to
the full self-consistent solution of the BdG equations for a superconductor–normal-metal–
superconductor (S–N–S) system (Plehnet al 1991, Haraet al 1993, Plehnet al 1994). As
we shall be concerned only with some qualitative features of the spectra, we believe that
our main results can be transferred to other geometries as well (e.g. to cylindrical vortices).

The scope of our paper is as follows. First, in section 2, a summary of the theoretical
framework is given. We present particular solutions of the BdG equations for the system
under investigation and discuss their properties for various values of relevant quantum
numbers. In section 3, the bound-states energy spectrum is investigated. We present our
results, obtained using exact solutions of the BdG equations, and compare them with the
outcomes of various approximate calculations. Also, an intuitive interpretation of the bound
states based on comparing energy spectra of an S–N–S system and of a semiconductor–
normal-metal–semiconductor (Sm–N–Sm) system is suggested. The densities of states are
presented and analysed in section 4 and a brief comment on the experimental observability
of the novel features is made. Finally, the role of the Andreev reflection and of other
scattering processes of quasiparticles at a normal-metal–superconductor (N–S) interface are
investigated in section 5.

2. Bogoliubov–de Gennes equations for an S–N–S system and their solutions

For clarity, in this section, we want to recall the basic equations that we relied upon and
give a brief outline of the methods that we employed in solving them yielding the results
presented in the following sections.
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Bogoliubov–de Gennes (BdG) equations for the quasiparticle amplitudesu(r) and
v(r) proved to provide a very efficient, fully microscopic framework for investigating
inhomogeneous superconductors. We write them in their basic form (de Gennes 1966)

[−∇2 − µ + U(r)]u(r) + 1(r)v(r) = Eu(r)

− [−∇2 − µ + U(r)]v(r) + 1∗(r)u(r) = Ev(r)
(1)

whereU(r) is the normal one-electron potential,1(r) is the pairing potential andµ
is the chemical potential of the system under study. Rydberg atomic units (¯h = 1, e2 = 2,
m = 1/2) are used in equation (1). In order to solve system (1) for a plane geometry, i.e.
in the case where the potentialsU(r) and 1(r) are non-uniform in theX-direction only,
we separate the variablesx, y andz by setting

u(r) = u(x)
1

2π
exp[i(kyy + kzz)] v(r) = v(x)

1

2π
exp[i(kyy + kzz)]. (2)

Furthermore, to improve the transparency, we drop the normalU(x)-potential by setting
U(x) = 0 in what follows. The pairing potential1(r) is taken to be real and of the form
(cf. figure 1)

1(x) = 0 ⇔ |x| < R 1(x) = 10 ⇔ |x| > R.

Then, the ‘one-dimensional’ wave-functionsu(x), v(x) satisfy the equations

d2

dx2
u(x) + [µt + E]u(x) − 1(x)v(x) = 0

d2

dx2
v(x) + [µt − E]v(x) + 1(x)u(x) = 0.

(3)

The new variable

µt ≡ µ − (
k2
y + k2

z

)
(4)

introduced in equation (3) plays the role of an ‘effective chemical potential’. It acquires
its largest valueµt = µ when the magnitude of the parallel component of the wave-vector,
t = √

(k2
y + k2

z ), is zero. That would correspond to a truly one-dimensional case. If we are
dealing with a three-dimensional slab-like geometry, however,t can take any value between
zero and infinity, implying that the domain of definition ofµt is actuallyµt ∈ (−∞; µ).
Allowing µt to acquire values over the full range of its definition, and particularly also
to be negative, will lead us to investigate features beyond the reach of the semiclassical
approximation.

The solutions of a one-dimensional BdG equation (3) for a piecewise-constant potential
are constructed in such a way that, first, fundamental systems of solutions for in the host and
in the spacer regions are found separately, and then they are matched across the interface
so that both the wave-functionsu(x), v(x) and their first derivativesu′(x), v′(x) remain
continuous. As the whole problem possesses a mirror symmetry with respect to thex = 0
plane, even- (̀ = 0) and odd- (̀ = 1) parity solutions can be searched for separately. This
means that only one of the two interfaces atx = −R and atx = R has to be taken into
account (see Butler (1976) for a thorough analysis of the analogy between the planar and the
spherical symmetry). In the normal region (|x| < R), solutions of the system of equations (3)
can be written in terms of spinor functions:

ψ̂(N)

1 =
(

1
0

)
exp(±iγ1x) ψ̂(N)

2 =
(

0
1

)
exp(±iγ2x) (5)
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where the frequenciesγ1, γ2 are

γ1 =
√

µt + E γ2 =
√

µt − E. (6)

In the superconducting region (|x| > L/2), the solutions are

ψ̂(S)

1 =
(

u0

v0

)
exp(±iω1x) ψ̂(S)

2 =
(

v0

u0

)
exp(±iω2x) (7)

where

u0 = E + 10 +
√

E2 − 12
0 v0 = E + 10 −

√
E2 − 12

0 (8)

the frequenciesω1, ω2 being

ω1 =
√

µt +
√

E2 − 12
0 ω2 =

√
µt −

√
E2 − 12

0. (9)

Depending on the values of the effective chemical potentialµt and of the excitation energy
E, the normal-state frequenciesγ1, γ2 can either be real or purely imaginary, while the
‘superconducting’ frequenciesω1, ω2 can be real, purely imaginary or complex. Evidently
which of these alternatives is the case has a crucial importance for the number of spinor
wave-functions, which form the fundamental system in the normal-state region and in the
superconducting region, for a particular choice of the continuous ‘quantum numbers’µt

andE.
A detailed summary of the situation concerning the number of functions in the

fundamental system of BdG equations (3) is presented in figure 2. In the normal (middle)
region, one does not need to care about the normalizability; however, the wave-functions
have to be constructed so as to be either even (` = 0) or odd (̀ = 1). This implies that just
two linearly independent solutions are available in the fundamental system of equations (3)
for |x| < R, no matter whether bothγ1 andγ2 are imaginary (regionBnorm in the ‘(µt ,E)-
plane’), orγ1 is real andγ2 is imaginary (regionCnorm), or bothγ1 andγ2 are real (region
Dnorm)—see figure 2(a). In the superconducting region, those wave-functions which diverge
exponentially atx = −∞ or atx = ∞ have to be rejected (the choice of` does not pose a
constraint now). That means that the number of normalizable solutions is two in the regions
Asup (frequenciesω1 andω2 are complex) andBsup (bothω1 andω2 are imaginary), three in
the regionCsup (ω1 is real andω2 is imaginary) and four in the regionDsup (bothω1 andω2

are real). Note that the curve separating the regionCsup from the rest of the (µt ,E)-plane
conforms toE = √

(µt
2 + 12

0) (cf. equation (9)).
The complete set of solutions constructed in this way can be formed exclusively by real

functions. The matching conditions at the superconducting–normal-region interface give
rise to a set of four linear algebraical equations. Hence, discrete bound states can occur
in the Asup- and theBsup-regions (the eigen-energy spectrum is determined by condition
that the secular determinant is zero), while continuum states exist at any point of theCsup-
and Dsup-regions of the (µt ,E)-plane (see figure 2(b)). Obviously, the discrete states are
bound (i.e. decaying) only in theX-direction (perpendicular to the interface), while their
wave-functions extend to infinity in the parallel-to-the-interface direction—cf. equation (2).

Note that our analysis reveals the possibility that discrete bound states exist also for
excitation energieslarger than the gap,10. Such states are analogous to the case of
particles confined to a slab-like potential well in the normalU(x)-potential. Clearly, within
the semiclassical approximation which assumes thatµt > 0 (Andreev 1966, Bar-Sagi and
Kuper 1974, Plehnet al 1991), one cannot investigate bound states withE > 10 (cf.
figure 2). Thus, we will pay special attention to this interesting case.
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Figure 2. Division of the (µt ,E)-plane into individual regions in the normal (a) and
superconducting (b) layer. The boundaries concerning the normal layer are shown with solid
lines while the boundaries relevant to the superconducting layers are shown with broken
lines. In the normal case, theCnorm-region is separated from theBnorm- and Dnorm-regions
by straight lines,E = |µt |. In the superconducting case, the regionCsup is marked by the curve
E = √

(µt
2 + 12

0). Note that the regionAsup, which spans the whole section below theE = 10

straight line in (b), has no counterpart in the normal case.

3. The excitation energy spectrum

In this section, the eigen-energy curvesE`n(µt ) will be presented for both parities,` = 0
and ` = 1 (the quantum numbern distinguishes between energy levels corresponding to
the samè andµt ). We will then compare them to theEn(µt)-curves which follow from
the semiclassical approximation; they are expected to agree for large enoughµt . For
smallµt , exactE`n(µt )-curves will be compared with the approximative analytical formula
of Kümmel (1974), as this is expected to give better agreement than the semiclassical
approximation in thisµt -range. Finally, in section 3.3, we present an intuitive interpretation
of the bound states based on the analysis of their spectra.

Throughout this section (as well as throughout sections 4 and 5), we measure the energy
in units of the Fermi energyEF and the distances in units of the inverse Fermi wave-vector
k−1

F . The particular system for which all the calculations presented here were done (see
figure 1) is determined by the numerical values

10 = 0.05EF R = 3ξ0 µ = 1.0EF (10)

(ξ0 is the usual Bardeen–Cooper–Schrieffer (BCS) coherence length, which isξ0 = 2/(π10)

in our units). We have checked that the general features of our results do not depend on
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the particular choice of the values in equation (10).

Figure 3. The energy excitation spectrum of
bound even-parity states (` = 0) in an S–N–S
junction for the effective chemical potential range
0 < µt < µ = 1.0EF.

Figure 4. The energy excitation spectrum of bound
odd-parity states (̀= 1) in an S–N–S junction for
0 < µt < µ = 1.0EF.

Figure 5. The energy excitation spectrum of bound
even-parity states (` = 0) in an S–N–S junction for
−0.15EF < µt < 0.05EF. Note that bound states with
excitation energies above the gap are present. The
hatched part of the plot denotes the region where only
oscillatory states can exist.

Figure 6. The energy excitation spectrum of bound
odd-parity states (̀= 1) in an S–N–S junction for
−0.15EF < µt < 0.05EF. As in figure 5, the hatched
part of the plot denotes the region where only oscillatory
states can exist.

3.1. Exact eigenvalue spectra of the Bogoliubov–de Gennes equations for a slab

For each parity`, the excitation eigen-energy spectral curvesE`n(µt ) were found by
searching for the zeros of the secular determinant numerically. The results are presented for
two partially overlapping ranges ofµt in figures 3–6. In total, four ‘energy bands’ emerged
for each`. These bands oscillate withµt (for µt > 0 only) and do not cross each other:
although a local minimum of an upper band occurs approximately for the sameµt as a local
maximum of a lower one, there is always a small ‘minigap’ left between any two bands.

Considering results of a semiclassical analysis (Gunsenheimeret al1994), we can deduce
that when the bound states merge into the continuum-states region (see figure 2), they change
to quasi-bound resonance states.
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As noted in section 2, the range ofµt is actually µt ∈ (−∞; µ). For ` = 1,
the lowest-energy band merges into the continuum regionCsup at µt = −0.75416EF,
E = 0.75581EF (i.e. atE = 15.11610). For ` = 0, the lowest energy band has not merged
the Csup continuum region within the investigatedµt -interval (which has stretched down
to µt = −6EF). The question of whether this band would disappear for negativeµt even
larger in absolute value or whether there would exist at least one bound state for anyµt

has remained open.
It is worth noting that we have not found any bound states in theBnorm-region of the

(µt ,E)-plane, i.e. forµt < −E, although the general analysis of section 2 does not exclude
such a possibility. We will address this issue later in section 5.3.

Another remarkable feature, not inferable from figures 3–6, is that whenever either the
depth of the well10 or its width 2R increases, the number of energy bands rises and the
minigaps between them decrease at the same time. We have found that this trend is a
general one.

Figure 7. A comparison of bound-states excitation
energy spectra obtained employing exact solutions
of BdG equations (solid lines, both̀ = 0 and
` = 1 symmetries plotted together) and employing
the semiclassical approximation (broken lines) for
0 < µt < 0.1EF. Only the first seven ‘semiclassical’
bands are shown.

Figure 8. A comparison of bound-states excitation
energy spectra obtained within an exact calculation
(solid lines, both` = 0 and` = 1 symmetries plotted
together) and within the semiclassical approximation
(broken lines) for 0< µt < µ = 1.0EF. Only the two
bands lowest in energy are displayed.

3.2. Comparison with other calculations

The semiclassical, Andreev or WKBJ approximation is the one most frequently used in
investigating S–N–S junctions. Basically, it consists in writing the quasiparticle amplitudes
in the form (Andreev 1964, Bar-Sagi and Kuper 1974)(

u(x)

v(x)

)
=

(
ū(x)

v̄(x)

)
exp(ikFx) (11)

and neglecting the Laplacian of̄u and v̄ with respect tokF∇ (a thorough discussion of
various formulations of the semiclassical approximation can be found, e.g., in Kobes and
Whitehead (1987) or Ashidaet al (1989)). Within this approximation, the eigen-energies
for the system depicted in figure 1 satisfy the equation (Kulik 1969, Furusaki and Tsukada
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1991, Plehnet al 1991)

arccos

(
En

10

)
− EnR√

µt

= −nπ n = 0, 1, 2, . . .. (12)

Energy eigenvalues based on equation (12) were presented in Bar-Sagi and Kuper (1974),
Plehnet al (1991) or in Gunsenheimeret al (1994). For the particular system under study
(see the beginning of section 2), the energy spectra obtained within an exact-solutions
framework (figures 3–6) and within the semiclassical approximation (equation (12)) are
compared in figures 7–8 for two ranges ofµt . Note that exact results for both̀= 0 and
` = 1 are presented in each of the figures simultaneously. Figure 7 shows that, as expected
(Kümmel 1974), the semiclassical theory does not provide a good description of bound-
states eigen-energies for smallµt . Nevertheless, it describes fairly accurately the overall
behaviour of theE`n(µt )-curves for largerµt , as demonstrated in figure 8 for the two
lowest energy bands. Evidently, the most significant difference between the semiclassical
and the exact energy eigenvalues is the absence of oscillations in the former. Moreover,
the semiclassical energy bands are ‘degenerate’ with respect to` and appear to represent
an average of the two exact curves.

As noted earlier in the end of section 2, states withµt < 0 cannot be dealt with within
the semiclassical framework.

Figure 9. A comparison of the bound-states excitation energy spectra obtained by solving the
BdG equations exactly (solid lines, both` = 0 and` = 1 symmetries plotted together) and by
using the approximative formula of K̈ummel (1974) (broken line).

Kümmel (1974) was probably the first one to stress a different character of bound
quasiparticle states with smallµt . He presented approximative analytical expressions
(equations (3.1)–(3.2) in K̈ummel (1974) and equation (2.6) in Kümmel (1977)) describing
energy levels of low-lying bound states with smallµt . In figure 9, we compare the exact
energy bands with those evaluated using expressions of Kümmel (1974) for our particular
system (when using relevant equations of Kümmel (1977), the overall picture remains the
same). It is evident that K̈ummel’s formula describes well the ‘upper’ branch of the lowest
energy band. However, it does not take into account the splitting of the band due to the
quantum number̀. For higherE, the agreement is less satisfactory, which is not surprising
as the approximative formula was derived on condition thatE � 10 (Kümmel 1974, 1977).
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3.3. Intuitive interpretation of the bound states

The physical mechanism responsible for bound-states formation in S–N–S junctions was
identified as the Andreev reflection of quasiparticles at an N–S interface (Andreev 1966):
the states bound by potential wells in the pairing1(x)-potential are basically standing waves
of Andreev-reflected particles and holes. However, such an explanation does not offer a
comprehensive intuitive insight into the phenomenon—it deals solely with the ‘mechanism
of confinement’ of quasiparticles in the middle normal region. Moreover, as noted already
by Kümmel (1974), not all bound states below the gap can be generated by the Andreev
reflection. We will investigate the role of the Andreev reflection and of other related
processes at N–S interfaces in detail in section 5. Here, we want to focus on presenting an
alternative view of the mechanism of bound-states formation, based on the analogy of an
S–N–S junction with a non-superconducting Sm–N–Sm planar system.

In the past, semiclassical excitation spectra of bound states in inhomogeneous
superconductors were compared to the spectra of electrons bound in a normalU(x)-potential
square well (Saint-James 1964, Kulik 1969, Bardeen and Johnson 1972, Kümmel 1974).
We want to present a similar analysis making use of theexactenergy spectra presented in
section 3.1. First, let us investigate physical characteristics of bound states associated with
a single energy band.

Every state characterized by quantum numbersµt , ` and n can be interpreted as a
mixture of particles and holes. We can estimate the weights of particle-like and hole-like
components by evaluating the integrals

Wu =
∫

dx |u(x)|2 Wv =
∫

dx |v(x)|2. (13)

Note that alwaysWu + Wv = 1 due to the normalization condition for bound states (de
Gennes 1966). EvidentlyWu is the probability that a particular excitation is a particle while
Wv is the probability that it is a hole.

Another characteristic feature of an exponentially damped bound state is its penetration
length D. For (µt ,E)-points inside theAsup-region, both functions of the fundamental
system decay in the superconducting layers at|x| > R with the same rate and, therefore,D

clearly is (cf. equation (9))

D =
[

1√
2

√
−µt +

√
µt

2 + 12
0 − E2

]−1

. (14)

For (µt ,E)-points inside theBsup-region, the two basis functions described by equation (7)
decay with different rates, yielding actually two different penetration lengths. It is natural
to consider the longer of them, which means that, inside theBsup-region, we have

D =
[√

−
(

µt +
√

E2 − 12
0

)]−1

. (15)

Note that the penetration lengthD defined in this way diverges whenever the bound-states
band merges into the continuum states region (cf. figure 2). Plausibly, this is because the
state ceases to be bound at that point.

In figure 10, the ‘probabilities’Wu andWv (defined by equation (13)) together with the
penetration lengthD (computed from equation (14)) are displayed in a limitedµt -range for
the lowest even-parity band (i.e. for the lowest of the bands presented in figures 3 and 5).
The general tendencies illustrated by this figure are obeyed by all the bands as well: (i) parts
of the E`n(µt )-curve with negative slopes correspond to predominantlyparticle-like states,
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Figure 10. Physical characteristics of the band of` = 0 symmetry lowest in energy: the
energy spectrum (a), integrals of the quasiparticle amplitudesWu and Wv (b) and the length
of penetration of the wave-function into the superconducting layer (c) are displayed within the
sameµt -range.

while parts of theE`n(µt )-curve with positive slopes correspond tohole-like states; (ii) the
penetration lengthD increases withµt for E < 10 and decreases withµt for E > 10.
When µt → µ, both Wu and Wv approach 1/2, which means that the excitation is with
an equal probability either a particle or a hole, similarly to in the case forE = 10 (see
equation (8)). For negativeµt , the excitation is almost exclusively a particle.

These findings are in agreement with the expectations based on a similar analysis
made for spinor wave-functions of auniform superconductor. Namely, considering the
definition (4), the excitation spectrum of a homogeneous system can be expressed in terms
of the µt -variable as

Ekx
(µt ) =

√
(k2

x + k2
y + k2

z − µ)2 + 12
0 =

√
(k2

x − µt)2 + 12
0 (16)

and the BCS ‘coherence factors’ in case of a uniform medium are

uh =
√

1

2

(
1 + k2

x − µt

E

)
vh =

√
1

2

(
1 − k2

x − µt

E

)
(17)
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whereEkx
(µt ) of equation (16) has been abbreviated to justE. Keepingkx fixed, it is easy

to show that when the excitation energy is decreasing withµt , i.e. when the slope of the
Ekx

(µt )-curve is negative,uh is larger thanvh indicating the predominantly particle-like
character of the excitation. On the other hand, when the slope of theEkx

(µt )-curve is
positive, clearlyvh > uh and the excitation is mainly a hole.

In what now follows, we shall attempt to provide a simple physical picture of the above
complex process of bound-states formation in an S–N–S junction. One way of looking at
a superconductor is to stress its energy gap and to consider it a special case of a semi-
conductor. The superconducting gap is then interpreted as aforbidden regionaround the
effective chemical potentialµt . Electrons with single-particle energies close toµt then form
bound states in the central normal-metal layer, because they cannot spread freely into the
outer superconductor/semiconductor layers.

To analyse this picture quantitatively, an energy spectrum of an Sm–N–Sm junction
(i.e. of a semiconducting analogy of the system depicted in figure 1) will be calculated.
For a fixed effective chemical potentialµt , it is necessary to investigate an auxiliary one-
dimensional system as displayed in figure 11. Ifµt < 0, this auxiliary system becomes just
a one-dimensional square potential well (and hence does not change withµt any more).
For a treatment of a similar problem of electron states in semiconducting heterostructures,
the reader is referred to Dingle (1975).

For a given effective chemical potentialµt , the one-electron energiesε within the
(µt − 10; µt + 10) interval form a discrete spectrum of bound states. States with one--
electron energiesε aboveµt correspond toparticles; their excitation energyE is

E = ε − µt . (18)

Note that this relation is true for negativeµt as well as forµt > 0. States with one-electron
energiesε below µt correspond toholesand their excitation energyE is

E = µt − ε. (19)

Obviously, holes can exist only ifµt > 0.
Strictly speaking, it is not possible to describe our auxiliary system with a normal

one-electronU(x)-potential: the ‘potential well’ in figure 11 extends just fromµt − 10 to
µt + 10 and the electrons can move freely below it. Nevertheless, it is possible to estimate
what the excitation spectrum of this system would look like, employing concepts similar
to those applied in semiconductor heterostructure studies (Dingleet al 1974, Dingle 1975,
Döhler 1981).

Inside the normal region, i.e. for|x| < R, the one-electron wave-functions are

ψN(x) = cos(γ x) ⇔ ` = 0 (even states)
ψN(x) = sin(γ x) ⇔ ` = 1 (odd states)

(20)

and the frequencyγ is

γ = √
ε. (21)

In the semiconducting regions, i.e. for|x| > R, the one-electron wave-functions are

ψS(x) = exp(−β|x|) (22)

and the damping factorβ is determined by the ‘distance’ of the one-electron energy level
ε from the relevant edge of the forbidden region,

β =
√

µt + 10 − ε ⇔ ε ∈ 〈µt ; µt + 10〉 (particles) (23)

β =
√

ε − µt + 10 ⇔ ε ∈ 〈µt − 10; µt 〉 (holes). (24)
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If µt < 10, the equation (24) for holes ought to be replaced by

β = √
ε. (25)

Matching the wave-functions and their derivatives at the interface provides the secular
equation yielding the one-electron energiesε`n(µt ). The excitation energiesE are then
evaluated relying on equations (18) and (19).

Figure 11. A schematic depiction of an auxiliary non-superconducting Sm–N–Sm system. The
‘potential well’ extends for|x| > R from µt − 10 to µt + 10; the forbidden regions are shaded.

Figure 12. A comparison of energy bands of a
superconducting S–N–S system (solid lines) and of a
corresponding non-superconducting auxiliary Sm–N–
Sm system (broken lines) for even-parity bound states
(` = 0) for −0.05EF < µt < 0.1EF.

Figure 13. A comparison of energy bands of
a superconducting S–N–S system (solid lines) and
of a corresponding non-superconducting Sm–N–Sm
system (broken lines) for even-parity bound states for
0 < µt < µ = 1.0EF.

The excitation spectrum of this auxiliary Sm–N–Sm system is compared with the exact
spectrum for a proper S–N–S system in figures 12 and 13 for two ranges ofµt . Dashed
curves with negative slopes correspond to particles in the Sm–N–Sm junction; dashed curves
with positive slopes correspond to holes (cf. figure 10). Only results for` = 0 are presented;
analogous plots for the other symmetry reveal the same qualitative features.

Let us summarize the basic trends. (i) When one concentrates on comparing particle-
like and hole-like sections of the energy bands separately, excitation spectra of the two
systems are quite similar for smallµt . This similarity improves whenE or µt decreases.
(ii) The most striking difference is the absence of ‘minigaps’ between adjacent bands for
the auxiliary system: particle-like and hole-like bands of the Sm–N–Sm structure cross
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each other in places where the energy gap seems to be restored in the S–N–S junction.
(iii) For large µt , the energy bands of the Sm–N–Sm system do not resemble those of a
superconducting S–N–S junction. However, for both systems, the numbers of particle-like
and hole-like branches of the excitation spectra still agree.

The following interpretation of the excitation spectra of S–N–S junctions has therefore
been reached: basically, the bound states are ‘trapped’ inside the middle normal
region by the same mechanism which determines electronic structure of semiconducting
heterostructures, i.e. the electrons concerned cannot penetrate deep into the superconducting
regions because there are no allowed states available for them. The superconductivity of
the outer layers manifests itself through restoring energy ‘minigaps’: wherever particle-like
and hole-like bands cross in the (µt ,E)-plane, excitations with oppositeky + kz occur (see
equation (4)), making the BCS pairing of quasiparticles with opposite momenta possible
(de Gennes 1966). When the penetration length of the excitations into the superconducting
region increases, the effect of superconductivity is enhanced and the minigaps eventually
get larger, as is observed for largeµt in figure 13.

Although this interpretation is based on investigation of an S–N–S planar junction, we
believe that it is relevant to other geometries as well, because excitation spectra of bound
states of cylindrical geometry (e.g. a vortex in a mixed state of a type-II superconductor)
exhibit the same basic features as those displayed in this paper in figures 3–6 (Šipr and
Györffy 1992).

4. Density of states

So far, only the energy spectraE`n(µt ) have been investigated. However, a quantity which
is directly related to observation is rather the density of states (DOS). Two types of local
quasiparticle densities of states can be distinguished, namely a local particle-like DOS
nu(x, E),

nu(x, E) = − 1

π
Im Guu(x, x; E) =

∑
n

|un(x)|2 δ(E − En) (26)

and a local hole-like DOSnv(x, E),

nv(x, E) = − 1

π
Im Gvv(x, x; E) =

∑
n

|vn(x)|2 δ(E − En). (27)

In these definitions,Guu(x, x ′; E) andGvv(x, x ′; E) are diagonal components of a 2× 2-
matrix Green function appropriate to BdG equations (1) andn stands for all possible quantum
states withEn > 0.

For the bound states investigated in this paper, equations (26) and (27) can be
transformed to

nw(x, E) = 1

4π

∑
`

∑
µE

∣∣∣∣∣
(

∂Eq(µt )

∂µt

)
µt=µE

∣∣∣∣∣
−1

|wµEq(x)|2 (28)

wherew is eitheru or v, ` is the parity,q abbreviates all quantum numbers except for
µt , and µE is such a value ofµt that Eq(µE) = E. The occurrence of the reciprocal
value of the differentiation of the spectral curveEq(µt) in equation (28) means that the
densities of states will have a fine and complicated structure, containing possibly a large
number of singularities (cf. plots ofEq(µt)-curves in figures 3–6). To get physically relevant
information, smoothing is necessary. To give a rough idea of the effect of such a smoothing,
we display a raw untreated local particle-like DOS forx = 0 together with a smoothed curve



182 O Šipr and B L Györffy

Figure 14. The local particle-like quasiparticle density
of states nu(x, E) in an S–N–S system atx = 0:
the raw untreated result (solid line) together with a
smoothed curve obtained by convoluting the former
with a Gaussian curve (broken line).

Figure 15. Smoothed local hole-like (the left-hand half
of the graph) and particle-like (the right-hand half of
the graph) quasiparticle densities of states in an S–N–
S system for four choices of the distancex from the
centre of the middle normal region.

in figure 14. The smoothing was done by convoluting the original spectrum of equation (28)
with a Gaussian curve of a full width at half-maximum equal to 0.002EF (which is 0.0410

for our system defined by (10)).
The dependences of local densities of bound states on thex-coordinate are investigated

in figure 15, where both smoothednu(x, E) and smoothednv(x, E) are shown for four
choices ofx. As is to be expected, local densities of bound states decrease as we are
moving away from the middle, normal, layer. An interesting feature is that the main peak
atE ' 0.510 decreases withx more quickly then the shoulder atE ' 0.9510. The position
of the smoothed main peak remainsfixedwhenx varies. This is in agreement with previous
semiclassical calculations for the same geometry (Tanaka and Tsukada 1991, Tanakaet
al 1991). Interestingly, calculations of the density of bound states in avortex coreindicate,
in contrast, a strong dependence of the position of the main peak in the local DOS on the
radial distancer (Shoreet al 1989, Klein 1990).

Note that particle-like and hole-like densities are similar but not identical. The most
striking difference occurs forE > 10—there are hardly any holes above the gap left, in
contrast to what is found in the case of the finite particle-like DOS at those energies. This
is in agreement with the finding of section 3.3 that states above10 are mainly particles.

In section 3.2, exact energy bands were compared to those obtained within the
semiclassical approximation. To estimate observable implications of the differences, it
is instructive to compare corresponding densities of states. The semiclassical analysis of
Plehnet al (1991) is based on the following simple analytical expression for the combined
x-integrated density of states:

g(E) =
∫ ∞

−∞
dx [nu(x, E) + nv(x, E)] . (29)

Considering equations (29), (28) and the normalization condition for bound states, we find
a formal expression forg(E):

g(E) = 1

4π

∑
`

∑
µE

∣∣∣∣∣
(

∂Eq(µt )

∂µt

)
µt=µE

∣∣∣∣∣
−1

. (30)
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Figure 16. A comparison of thex-integrated combined densities of statesg(E) in an S–N–S
system: a smoothed curve calculated using exact solutions (solid line) together with a curve
obtained within the semiclassical approximation (broken line).

A comparison of the combinedx-integrated DOS calculated using exact solutions of BdG
equations (equation (30) of this paper) and using solutions obtained within the semiclassical
approximation (equation (20) in Plehnet al (1991)) is presented in figure 16 for the system
parameters of equation (10).

It is evident that the semiclassical result does not differ significantly from the exact
one. Rapid oscillations of the smoothed exact curve persist only above the main peak, for
energies 0.610 < E < 10. Otherwise, there seems to be a little chance to observe any
deviations from the semiclassical prediction experimentally. Note also that thedifference
between the ‘semiclassical DOS’ and the DOS calculated from exact solutionsis large if
the number of energy bands below the gap is small: in that case, namely, the singularities
in the DOS caused by the zero (∂Eq(µt )/∂µt )-differentiation are far apart and hence not
smeared out in the process of DOS broadening (cf. figures 3–8 and 14 and equations (28)
and (30)). This implies that the fine DOS structure predicted on the strength of using the
exact solutions of BdG equations could be observed in systems with a small gap10 or
with a small thickness of the normal layer 2R, in accordance with the finding mentioned at
the end of section 3.1. One has to bear in mind, however, that the effect discussed in this
section might be obscured in real S–N–S structures by other effects not described by our
simple ‘jellium’ model (such as the band structure of the materials involved). A quantitative
assessment of such effects would go far beyond the scope of this paper, however.

A novel feature of our study is the inclusion of bound statesabove the gap, which
appear for negativeµt only. In section 3.3, it was found that the analogy between an
S–N–S junction (described by figure 1) and an Sm–N–Sm junction (shown in figure 11)
works particularly well forµt < 0 (see figure 12). To investigate the analogy a bit more
deeply, we compare densities of states in an S–N–S junction, calculated from equations (26)
and (30), with the same quantities calculated for a non-superconducting Sm–N–Sm system
for E > 10.

The raw (unsmoothed) quasiparticle local DOSnu(x, E) for x = 0 is displayed in
figure 17 for both S–N–S and Sm–N–Sm systems, and the combinedx-integrated DOS
g(E) is shown in figure 18. It can be seen immediately that the two curves to be compared
closely resemble each other, especially in the case of the combinedx-integrated DOSg(E),
where they can hardly be distinguished one from another forE > 210. This fact supports



184 O Šipr and B L Györffy

Figure 17. The local particle-like quasiparticle DOS
nu(x, E) in an S–N–S system (solid line) together with
the local quasiparticle DOS for a square well in a normal
U(x)-potential (broken line) for energies above the gap.
Both curves have been calculated forx = 0.

Figure 18. Thex-integrated combined DOSg(E) in an
S–N–S system (solid line) together with thex-integrated
combined DOS for a square well in a normalU(x)-
potential (broken line) for energies above the gap.

the interpretation of bound states proposed in section 3.3 in this particular energy range.
(On the other hand, one cannot expect good agreement between densities of states for the
Sm–N–Sm and S–N–S systems if the energyE is below the gap, as in that case states
with large µt , for which their energy spectra differ significantly, become important—see
figure 13.)

It is necessary to note that, although conceptually bound states above the gap pose a
significant feature, their contribution to the quasiparticle DOS above the gap is very small
in comparison with the contribution of extended states in that energy region (cf. calculated
DOS curves in figure 2 of Plehnet al (1991) or in figure 2a of Furusaki and Tsukada
(1991)). Hence, it would be extremely difficult to identify the contribution of the bound
states above the gap relying on DOS measurements in real systems.

5. Scattering of quasiparticles at N–S interfaces

In section 3.3, we gave anintuitive interpretation of the mechanism of formation of bound
states in S–N–S junctions. We also noted that it is conventional to regard Andreev reflection
as the key to understand the trapping of quasiparticles inside the normal regions embedded
in a superconductor (Abrikosov 1988). In this section, we intend to present a thorough
analysis of scattering processes at N–S (normal-metal–superconductor) interfaces, taking the
parallel-to-the-interface degree of freedom fully into account. In that respect, our analysis
is a supplement to that of Blonderet al (1982), who limited their investigation to a proper
one-dimensional case only.

5.1. Basic considerations

Suppose we are investigating a system composed of a semi-infinite normal metal forx < 0
and of a semi-infinite superconductor with a uniform pairing potential1(x) = 10 for x > 0.
The normalU(x)-potential is zero everywhere. We want to investigate the scattering of an
electron by the N–S interface. Quasiparticles are labelled by their excitation energyE and
by the effective chemical potentialµt (see equation (4)). In three dimensions, the incident
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electron is described by (K̈ummel 1969, Blonderet al 1982)

ψ̂inc =
(

1
0

)
exp(iγ1x) exp[i(kyy + kzz)]. (31)

The frequencyγ1 is defined by equation (6); theY - and Z-directions are ‘factored-out’
similarly to in equation (2). Recalling figure 2(a) and the discussion at the end of section 2,
it can be seen that such an incoming electron wave can occur only in regionsCnorm andDnorm.
When this incoming electron interacts with the N–S interface, it is subjected (with various
probabilities) to four distinct processes (Blonderet al 1982): normal reflection, Andreev
reflection, normal transmission (called transmission ‘without branch crossing’ in Blonder
et al (1982)) and Andreev transmission (‘with branch crossing’) (see also Kümmel (1969)
for a thorough discussion of group velocities of quasiparticles in the situation concerned).
Depending on the position in the (µt ,E)-plane in figure 2, the outgoing quasiparticles either
propagate to infinity or are exponentially damped.

A normally reflected wave

ψ̂norm
R =

(
1
0

)
exp(−iγ1x) exp[i(kyy + kzz)] (32)

can propagate insideCnorm- and Dnorm-regions—i.e. under the same conditions as the
incident wave can. On the other hand, Andreev reflection

ψ̂And
R =

(
0
1

)
exp(iγ2x) exp[i(kyy + kzz)] (33)

occurs only in theDnorm-region of the (µt ,E)-plane; elsewhere it has to be substituted for
with a function exponentially damped inside the normal metal.

No kind of transmission into the superconducting region is possible forE > 10,
i.e. inside theAsup-region. Similarly, neither it is possible within theBsup-region (see
figure 2(b)). Normal transmission giving rise to the wave-function

ψ̂norm
T =

(
u0

v0

)
exp(iω1x) exp[i(kyy + kzz)] (34)

can exist in theCsup- andDsup-regions. An Andreev-transmitted wave

ψ̂And
T =

(
v0

u0

)
exp(−iω2x) exp[i(kyy + kzz)] (35)

can propagate only if the corresponding (µt ,E)-point is inside theDsup-region. The
frequenciesγ2, ω1 andω2 are defined in equations (6) and (9), coherence factorsu0, v0 by
equation (8).

With each of the wave-functions (31)–(35), a probability currentj can be associated,
using the relation (K̈ummel 1969, Blonderet al 1982)

j = 2 Im [u∗∇u − v∗∇v]. (36)

One can find easily that thex-component (perpendicular to the interface) of the probability
current is positive forjinc, jnorm

T and jAnd
T while it is negative forjnorm

R and jAnd
R . This

indicates that the wave-functions (32) and (33) really correspond to reflected quasiparticles
while the wave-functions (34) and (35) correspond to transmitted ones. The parallel-to-the-
interface component of the currentj always has the same sign forjinc, jnorm

R and jnorm
T

while it has the opposite sign forjAnd
R andjAnd

T . This reflects an interesting feature of the
Andreev scattering, viz. that the tangential component of the current does change the sign, in
contrast to what occurs in the case of the normal reflection or transmission (for an Andreev
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Figure 19. Changes in the direction of the probability currentj in various scattering events
at the N–S interface (schematic). An arrow with a full dot represents an excitation which is
predominantly a particle; an arrow with a blank circle represents a hole-like excitation.

reflection, this was noted already by Andreev (1964)). Schematically, the changes in the
direction of the currentj in the four processes concerned in a proper three-dimensional case
are depicted in figure 19.

Figure 20. A schematic depiction of the three particular choices of the effective chemical
potentialµt for which the scattering at N–S interfaces is investigated in figures 21–25. For
eachµt , the beginning of the allowed range of energiesE is marked by a full solid circle while
sections of different scattering regimes are separated by empty circles (see the text for further
details). The division of the (µt ,E)-plane into individual regions, as suggested by thin solid and
broken lines, is the same as in figure 2.

In order to calculate probabilities of the scattering processes investigated, first it is
necessary to match the wave-functions and their derivatives in the normal region,

ψ̂inc + aψ̂norm
R + bψ̂And

R

and in the superconducting region

cψ̂norm
T + dψ̂And

T

at x = 0 and to calculate the matching coefficientsa, b, c andd. If any of the propagating
solutions presented in equations (33)–(35) does not exist, it has to be substituted for with a
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correspondingexponentially dampedsolution. When the matching coefficientsa, b, c and
d are available, it is possible to calculate thex-components of the probability currentsjinc,
jnorm

R , jAnd
R , jnorm

T andjAnd
T associated with the wave-functions presented in equations (31)–

(35). If no solution of a given type propagating in theX-direction exists, thex-component of
the corresponding currentj is naturally zero. Finally, the probability of any of the scattering
processes is obtained on dividing the thex-components of the relevant probability currents
by thex-component ofjinc (Blonderet al 1982, Yamamotoet al 1991).

Figure 21. Probabilities of normal reflectionRn (solid
line) and normal transmissionTn (broken line) of an
electron at an N–S interface forµt = µ

(1)
t . Andreev

reflection and Andreev transmission are identically zero
for any E for this choice ofµt .

Figure 22. Probabilities of normal reflectionRn (solid
line), normal transmissionTn (broken line), Andreev
reflection RA (dotted line) and Andreev transmission
TA (chain line) of an electron at an N–S interface for
µt = µ

(2)
t .

In this paper, we want to investigate the energy dependence of the probabilities of normal
reflection Rn, Andreev reflectionRA, normal transmissionTn and Andreev transmission
TA. Employing different values of the effective chemical potentialµt , we will be able
to distinguish cases in which only some of the scattering processes are permitted, the
others having identically zero probability. Three different generic situations are depicted
in figure 20 (cf. also figure 2). For example, forµ = µ

(1)
t , just two distinct ‘phases’ are

possible: (i)Rn 6= 0, RA =Tn =TA = 0 if the (µt ,E)-point falls in theAsup-region or in the
Bsup-region; and (ii)Rn 6= 0, Tn 6= 0, RA =TA = 0 if (µt ,E) is in theCsup-region. Similar
phases can be identified forµt = µ

(2)
t andµt = µ

(3)
t as well.

The one-dimensional situationstudied by Blonderet al (1982) belongs particularly to
the µt = µ

(3)
t -class (in one dimension, obviouslyµt = µ—cf. equation (4)). However,

although Blonderet al (1982) went beyond the semiclassical approximation, their results
are still only approximate ones (see the appendix of their paper). Thus it might be useful
to see how much their conclusions change when exact calculation is employed.

5.2. Particular results

The results for each of the specific cases,µ
(1)
t = −0.510, µ

(2)
t = 0.510 andµ

(3)
t = µ, are

displayed in figures 21–25. Similarly to the choice presented in equation (10), we put
10 = 0.05EF, µ = 1.0EF throughout this section. The simplest case of all,µt = µ

(1)
t , is

studied in figure 21. The N–S interface is totally reflective forE <
√

((µ
(1)
t )2 + 12

0); then
the reflection probabilityRn decreases rapidly, implying a steep rise ofTn (as the natural
condition

Rn + RA + Tn + TA = 1
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Figure 23. Probabilities of normal transmissionTn

(broken line) and Andreev reflectionRA (dotted line) of
an electron at an N–S interface forµt = µ

(3)
t . Normal

reflectionRn and Andreev transmissionTA are too small
to be visible with thisy-axis scale.

Figure 24. Probabilities of normal reflectionRn (solid
line), normal transmissionTn (broken line), Andreev
reflection RA (dotted line) and Andreev transmission
TA (chain line) of an electron at an N–S interface for
µt = µ

(3)
t . Note the changed scaling of they-axis with

respect to that of figure 23.

Figure 25. Probabilities of Andreev transmissionTA (chain line) and Andreev reflectionRA

(dotted line) of an electron at an N–S interface forµt = µ
(3)
t . Normal reflectionRn is too small

to be visible in this scale, and normal transmissionTn is beyond the range of they-axis of this
plot (cf. figure 23).

holds).
The situation forµt = µ

(2)
t is analysed in figure 22. The overall picture is a rather more

complicated one than in figure 21. ForE < 10, the transmission probabilitiesTn andTA are
zero identically. IfE < 10/2, both normal and Andreev reflection are possible—figure 22
demonstrates that the regime of dominant Andreev reflection is gradually switched to the
situation whenRn < RA. Only one type of scattering process, viz. a normal reflection,
is possible for10/2 < E < 10. Transmission processes become available forE > 10:
Andreev transmission occurs only for energies between10/2 and

√
((µ

(2)
t )2 + 12

0) (cf.
figure 20), while normal transmission is possible for anyE > 10. Similarly to what is seen
in figure 21, the transmission probabilityTn soon becomes larger thanRn by an order of
magnitude.

In figures 23–25, the case whereµt = µ
(3)
t is investigated. The overall situation

(figure 23) seems to confirm approximative results of Blonderet al (1982) (cf. figure 5 for
Z = 0 in their paper): Andreev reflection dominates forE < 10, then normal transmission
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becomes possible and soon becomes the dominant process. Other processes (neglected by
Blonderet al (1982)) contribute as well; however, their probability is smaller by an order of
magnitude. This is demonstrated in figures 24 and 25 (note the different scales on the vertical
axes of these figures). The normal reflection, although in principle permitted throughout the
energy range, practically vanishes forE > 10. The Andreev transmission starts to rise very
slowly from TA = 0 at E = 10 and reaches its peak value close toE = √

((µ
(3)
t )2 + 12

0),
which is the upper limit of its domain of definition. Interestingly, Andreev reflection also
has a local maximum just before the upper limit of its domain of definition:E = µ

(3)
t

(figure 25). We have found that these features are generic to anyµt betweenµt = 10 and
µt = µ. However, the absolute heights of these local maxima ofRA andTA decrease with
increasingµt .

5.3. Discussion

The results given in section 5.2 demonstrate that, when a properthree-dimensional caseis
investigated, the manifold of scattering processes at the N–S interface is more diversified
than might be inferred from the one-dimensional study of Blonderet al (1982). In particular,
this is true even in absence of anyU(x)-potential steps (or barrier-simulatingδ(x)-type
potentials).

For a one-dimensional model, the approximations employed by Blonderet al (1982) do
not lead to essential changes with respect to an exact calculation: the differences between
the overall picture presented in figures 23–25 of this paper on the one hand and theZ = 0
subsection of figure 5 in Blonderet al (1982) on the other are very small in magnitude and
would be difficult to detect experimentally in real superconductors.

Now, let us turn back to the problem of interpretation of bound states in S–N–S junctions.
The general analysis of quasiparticle scattering at N–S junctions together with particular
results shown in section 5.2 indicate that the often-quoted statement that ‘bound states in
S–N–S junctions are formed by Andreev reflection’ is not entirely true, as pointed out
already by K̈ummel (1974).Andreev reflectionis limited just to situations whereµt > E

(cf. figures 2 and 20 and section 5.1). Forµt < 0 or for µt < E, a normal reflection is
the only process responsible for binding quasiparticles inside the middle normal region.
Physically, such states describe quasiparticles moving rapidly in the direction parallel to the
N–S interface.

Apart from that, whenever Andreev reflection is possible, normal reflection occurs as
well. To investigate the gradual changeover from a normal-reflection-dominated situation
to an Andreev-reflection-dominated situation, the integrals

Snorm = 1

10

∫ 10

0
dE Rn(E) (37)

and

SAnd = 1

10

∫ 10

0
dE RA(E) (38)

were computed. The results for10 = 0.05EF andµ = 1.0EF are displayed in figure 26. It is
interesting to note that theµt -range where the normal reflection is significant (approximately
µt < 210) is more or less identical to the range where Sm–N–Sm energy bands agree with
S–N–S energy bands (cf. figure 12).

Results similar to those presented in this section were obtained by Hurd and Wendin
(1994) who studied a one-dimensional version of our system (cf. figure 1), with different
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Figure 26. Integrated probabilities of the normal reflectionSnorm (solid line) and of the Andreev
reflectionSAnd (dotted line) of an electron at an N–S interface.

phasesφL, φR of the complex pairing potential1(x) in the left- and right-hand-side
superconductors. They found that disposing of the semiclassical approximation leads to
coexistence of the normal reflection of quasiparticles at the N–S interface alongside the
Andreev one.

The last remark concerns the fact that, in section 3.1, we have not found any bound
states forµt < −E, i.e. in theBnorm-region of the (µt ,E)-plane. As already discussed in
section 5.1, no propagating particle can exist with such parameters. Hence, no standing
waves can form for such (µt ,E)-values at all in the normal layer, implying that no
‘conventional’ bound states are able to exist in theBnorm-region. The only remaining choices
would be purely interface-related states. Although we have not proven it rigorously, our
experience indicates that this does not happen.

6. Conclusions

We have investigated excitation spectra of S–N–S junctions and scattering processes at N–S
interfaces using exact solutions of the Bogoliubov–de Gennes equations. Our calculations
demonstrate that whilst the semiclassical approximation accounts correctly for the overall
trends of theE`n(µt ) spectral curves, it fails to describe some important details, especially
for low values of the effective chemical potentialµt = µ − (

k2
y + k2

z

)
. As might be

expected, such differences as exist between the exact and semiclassical solutions are less
pronounced in the case of the density of states and other integrated quantities.

As a new result, we have shown that bound states exist also for excitation energies
above the gap10. These states correspond to lowµt , i.e. to large parallel-to-the-interface
momenta, and cannot altogether be accounted for within the semiclassical approximation.

Analysing the bound states in S–N–S junctions we have found that they can be well
described with the help of an analogy with non-superconducting Sm–N–Sm junctions. The
main effect of superconductivity on the bound states consists in opening energy minigaps
wherever Sm–N–Sm hole-like and particle-like excitation energy bands cross and hybridize.

Finally we demonstrated that whilst the Andreev reflection is the dominant mechanism
in trapping the bound states, it is not the only one. The normal reflection contributes as well
and, for lowµt , its importance increases. For states withµt < E, the Andreev reflection
is zero and the normal reflection becomes the only phenomenon responsible for generation
of bound states in S–N–S junctions.

In conclusion we wish to stress that the key ideas outlined in this paper for a planar



Bound states in superconductors 191

geometry are most likely to be valid for other geometries as well. In particular they may
be helpful in discussing bound states in the cylindrical vortices of type-II superconductors.
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