IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Interpretation of bound states in inhomogeneous superconductors: the role of Andreev

reflection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 169
(http://iopscience.iop.org/0953-8984/8/2/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.151
The article was downloaded on 12/05/2010 at 22:49

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) 169—-191. Printed in the UK

Interpretation of bound states in inhomogeneous
superconductors: the role of Andreev reflection

Ond'ej Siprit and Bahzs L Gyorffyt

1 H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
1 Institute of Physics of the Academy of Sciences of the Czech Republic, Cukrovarbi;k
162 00 Praha 6, Czech Republic

Received 30 June 1995, in final form 10 November 1995

Abstract. We study the quasiparticle bound states of superconductor—-normal-metal-super-
conductor (S—N-S) junctions using the framework of Bogoliubov—de Gennes equations. We
find that whilst the frequently employed semiclassical approximations give a good account of
the overall spectra, a rich variety of interesting details get lost in making such simplifications. In
particular, this is the case with the behaviour of states corresponding to large momenta parallel
to the interfacial planes and with bound states above the gap. We compare the spectra of the
S—N-S junction with an analogous non-superconducting semiconductor—-metal-semiconductor
system and show how the new features can be understood in simple physical terms. We also
examine the limitations of using Andreev reflection alone to describe the trapping of normal-state
quasiparticles inside normal regions embedded in a superconductor.

1. Introduction

As has been known for a long time, inhomogeneities in the pairing poteniia) of

a superconductor can give rise to bound quasiparticle states—in a manner similar to
binding by a ‘normal’U (r)-potential. Such bound states have been found theoretically in
superconducting films deposited on normal metals (de Gennes and Saint-James 1963), in the
core of a vortex line (Carolet al 1964), in superconductor—normal-metal-superconductor
structures (Andreev 1966, Kulik 1969), and in other systems as well. Furthermore, the
contribution of the bound states is essential, e.g., for Josephson currents in mesoscopic
weak links (Bardeen and Johnson 1972, Furusaki and Tsukada 1991), for tunnelling
densities of states and current—voltage characteristics of films with superconducting surface
sheaths (KKmmel 1977, Entin-Wohlman and Bar-Sagi 1978) and for the differential
conductance as measured by a scanning tunnelling microscope near the vortex cores of type-
Il superconductors (Shoret al 1989, Gygi and Schiter 1991). The role played by bound
states in the transport properties of superconducting mesoscopic weak links was recently
analysed by Marh-Roderoet al (1994) and Levy Yeyatéet al (1995), and superconducting
ballistic point contacts were investigated by Hurd and Wendin (1994).

The Andreev reflection of quasiparticles at the normal-metal-superconductor boundary
(Andreev 1964) has been identified as the key phenomenon underlying the existence of
these bound states. However, as was noted first bgnidel (1974), not all the bound
states in inhomogeneous superconductors can be generated in this way. Moreover, most
of the previous calculations involving bound states employed the so-called ‘Andreev’ or
‘semiclassical’ approximation (Andreev 1964, Bardestnal 1969), which is not suited
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for investigation of quasiparticles moving rapidly in the direction parallel to the normal-
metal-superconductor interface (alternatively, in exact formulations, the movement in that
direction was suppressed altogether (Gygi and {8ehl1991)).

S-N-S system
normal
superconductor metal superconductor
pairing potential A(z)
Ay ———ee——————
0 ______________________
T=- =R

Figure 1. Schematic cross-sections of the tri-layer S—-N-S system investigated in this paper.
The normalU (x)-potential is zero everywhere; the thickness of the normal middle layeR.is 2
The system is uniform in th&- and Z-directions.

In this paper, we wish to throw some light on some interesting features of these bound
states. We shall go beyond the semiclassical arguments of Andreev (1964) and Bzrdeen
al (1969), dispense with the simplification of Gygi and Sdaf (1991) and investigate some
basic features of the bound states generated by a well in the pairing poteatiglusing
exactsolutions of the full Bogoliubov—de Gennes (BdG) equations. To make headway, we
concentrate on the simplest case of all—a slab-like square well(in), as depicted in
figure 1. Previous calculations demonstrated that suat(+g is a good approximation to
the full self-consistent solution of the BAG equations for a superconductor—normal-metal—
superconductor (S—N-S) system (Pledtral 1991, Haraet al 1993, Plehret al 1994). As
we shall be concerned only with some qualitative features of the spectra, we believe that
our main results can be transferred to other geometries as well (e.g. to cylindrical vortices).

The scope of our paper is as follows. First, in section 2, a summary of the theoretical
framework is given. We present particular solutions of the BdG equations for the system
under investigation and discuss their properties for various values of relevant quantum
numbers. In section 3, the bound-states energy spectrum is investigated. We present our
results, obtained using exact solutions of the BdG equations, and compare them with the
outcomes of various approximate calculations. Also, an intuitive interpretation of the bound
states based on comparing energy spectra of an S—-N-S system and of a semiconductor—
normal-metal-semiconductor (Sm—N—-Sm) system is suggested. The densities of states are
presented and analysed in section 4 and a brief comment on the experimental observability
of the novel features is made. Finally, the role of the Andreev reflection and of other
scattering processes of quasiparticles at a normal-metal-superconductor (N-S) interface are
investigated in section 5.

2. Bogoliubov—de Gennes equations for an S—N-S system and their solutions

For clarity, in this section, we want to recall the basic equations that we relied upon and
give a brief outline of the methods that we employed in solving them yielding the results
presented in the following sections.
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Bogoliubov—de Gennes (BdG) equations for the quasiparticle amplitu¢es and
v(r) proved to provide a very efficient, fully microscopic framework for investigating
inhomogeneous superconductors. We write them in their basic form (de Gennes 1966)

[-VZ — 4+ U@)]u(r) + A@)v(r) = Eu(r)

2 . (1)
— [V = u+Um]v(r) + A*(r)u(r) = Ev(r)

where U (r) is the normal one-electron potential,(r) is the pairing potential ang
is the chemical potential of the system under study. Rydberg atomic énisl( e = 2,
m = 1/2) are used in equation (1). In order to solve system (1) for a plane geometry, i.e.
in the case where the potentidlgr) and A(r) are non-uniform in theX-direction only,
we separate the variables y andz by setting

1 . 1 .
u(r) = M(X)E exp[l(kyy + kzz)] v(r) = U(X)Z exp[l(kyy + kzz)]' (2)

Furthermore, to improve the transparency, we drop the nofifa)-potential by setting
U(x) = 0 in what follows. The pairing potentiah(r) is taken to be real and of the form
(cf. figure 1)

Ax) =0« |x| <R A(x) = Ag < |x| > R.

Then, the ‘one-dimensional’ wave-functiongx), v(x) satisfy the equations

d2
@u(x) + [ + Elu(x) — A(x)v(x) =0
3
d2
32V + [ — Ev() + Awu() = 0.

The new variable

= (244 @)

introduced in equation (3) plays the role of an ‘effective chemical potential’. It acquires
its largest valua:, = © when the magnitude of the parallel component of the wave-vector,

t = J(k% + kf), is zero. That would correspond to a truly one-dimensional case. If we are
dealing with a three-dimensional slab-like geometry, howevean take any value between
zero and infinity, implying that the domain of definition pf is actually u; € (—oo; ).
Allowing u, to acquire values over the full range of its definition, and particularly also
to be negative, will lead us to investigate features beyond the reach of the semiclassical
approximation.

The solutions of a one-dimensional BdG equation (3) for a piecewise-constant potential
are constructed in such a way that, first, fundamental systems of solutions for in the host and
in the spacer regions are found separately, and then they are matched across the interface
so that both the wave-functiongx), v(x) and their first derivatives’(x), v'(x) remain
continuous. As the whole problem possesses a mirror symmetry with respectito=tide
plane, even-{ = 0) and odd- { = 1) parity solutions can be searched for separately. This
means that only one of the two interfacesxat —R and atx = R has to be taken into
account (see Butler (1976) for a thorough analysis of the analogy between the planar and the
spherical symmetry). In the normal regidn|(< R), solutions of the system of equations (3)
can be written in terms of spinor functions:

™= < é) exp(Eiyix) ™ = ( 2) exp(xiy,x) 5)
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where the frequencieg, y, are

n=vu +E y2=+vu —E. (6)

In the superconducting regiofx( > L/2), the solutions are

P> = ( “o ) exp(tiwix) P = ( vo )exp(iiwzx) (7

Vo Uo

uo=E + Ao+,/E2— A2 vo=E + Ag—/E2— A2 (8)

the frequencies;, w, being

a)lz,/,u,+,/E2—A(2) a)zzwlul—,/Ez—Ag. 9)

Depending on the values of the effective chemical poteptiand of the excitation energy

E, the normal-state frequencies, y, can either be real or purely imaginary, while the
‘superconducting’ frequencies;, w, can be real, purely imaginary or complex. Evidently
which of these alternatives is the case has a crucial importance for the number of spinor
wave-functions, which form the fundamental system in the normal-state region and in the
superconducting region, for a particular choice of the continuous ‘quantum numbers’
andE.

A detailed summary of the situation concerning the number of functions in the
fundamental system of BdG equations (3) is presented in figure 2. In the normal (middle)
region, one does not need to care about the normalizability; however, the wave-functions
have to be constructed so as to be either e¥ea Q) or odd ¢ = 1). This implies that just
two linearly independent solutions are available in the fundamental system of equations (3)
for |x| < R, no matter whether botly andy, are imaginary (regioBnom in the ‘(u;,E)-
plane’), ory; is real andy, is imaginary (regionCporm), Or bothy,; andy, are real (region
Drnorm)—see figure 24). In the superconducting region, those wave-functions which diverge
exponentially atc = —oo or atx = oo have to be rejected (the choice ©tloes not pose a
constraint now). That means that the number of normalizable solutions is two in the regions
Asyp (frequencieso; andw; are complex) ands,p (bothw; andw, are imaginary), three in
the regionCsyp (w; is real andw; is imaginary) and four in the regioBsp (bothw; andw;
are real). Note that the curve separating the rediggp from the rest of the(,,E)-plane
conforms toE = /(% + A3) (cf. equation (9)).

The complete set of solutions constructed in this way can be formed exclusively by real
functions. The matching conditions at the superconducting—normal-region interface give
rise to a set of four linear algebraical equations. Hence, discrete bound states can occur
in the Ag, and the Bgyyregions (the eigen-energy spectrum is determined by condition
that the secular determinant is zero), while continuum states exist at any point Gf the
and Dgyrregions of the g,,E)-plane (see figure 2f). Obviously, the discrete states are
bound (i.e. decaying) only in th&-direction (perpendicular to the interface), while their
wave-functions extend to infinity in the parallel-to-the-interface direction—cf. equation (2).

Note that our analysis reveals the possibility that discrete bound states exist also for
excitation energiedarger than the gap,Ap. Such states are analogous to the case of
particles confined to a slab-like potential well in the norrtigk)-potential. Clearly, within
the semiclassical approximation which assumes that 0 (Andreev 1966, Bar-Sagi and
Kuper 1974, Plehret al 1991), one cannot investigate bound states whth- Ag (cf.
figure 2). Thus, we will pay special attention to this interesting case.

where
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Figure 2. Division of the (u,,E)-plane into individual regions in the normak)( and
superconductings) layer. The boundaries concerning the normal layer are shown with solid
lines while the boundaries relevant to the superconducting layers are shown with broken
lines. In the normal case, th€norm-region is separated from thBnorm- and Dnorm-regions

by straight linesE = |u,|. In the superconducting case, the regipyp is marked by the curve

E = /(1 + A2). Note that the regiortsyp Which spans the whole section below the= Ag
straight line in §), has no counterpart in the normal case.

3. The excitation energy spectrum

In this section, the eigen-energy curvEg,(i1,) will be presented for both paritieg,= 0

and ¢ =1 (the quantum numbert distinguishes between energy levels corresponding to
the samef and ;). We will then compare them to thg, (u,)-curves which follow from

the semiclassical approximation; they are expected to agree for large epgugFRor

small u,, exactEy, (u,)-curves will be compared with the approximative analytical formula

of Kimmel (1974), as this is expected to give better agreement than the semiclassical
approximation in thig«,-range. Finally, in section 3.3, we present an intuitive interpretation

of the bound states based on the analysis of their spectra.

Throughout this section (as well as throughout sections 4 and 5), we measure the energy
in units of the Fermi energ¥r and the distances in units of the inverse Fermi wave-vector
k;l. The particular system for which all the calculations presented here were done (see
figure 1) is determined by the numerical values

Ao = 0.05E|: R = 350 Mm = l.OEF (10)

(&0 is the usual Bardeen—Cooper—Schrieffer (BCS) coherence length, wiick-i2/ (7 Ag)
in our units). We have checked that the general features of our results do not depend on
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the particular choice of the values in equation (10).
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Figure 3. The energy excitation spectrum of Figure 4. The energy excitation spectrum of bound
bound even-parity states¢£0) in an S-N-S odd-parity states¢(=1) in an S-N-S junction for
junction for the effective chemical potential rangeO < u; < u = 1.0EF.

0 < us < p=10Eg.
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Figure 5. The energy excitation spectrum of boundFigure 6. The energy excitation spectrum of bound
even-parity states/(=0) in an S—-N-S junction for odd-parity states¢(=1) in an S-N-S junction for
—0.15EF < u; < 0.05Ef. Note that bound states with —0.15EF < u, < 0.05E¢. As in figure 5, the hatched
excitation energies above the gap are present. Thmart of the plot denotes the region where only oscillatory
hatched part of the plot denotes the region where onlstates can exist.

oscillatory states can exist.

3.1. Exact eigenvalue spectra of the Bogoliubov—de Gennes equations for a slab

For each parity?, the excitation eigen-energy spectral curvgg,(u,) were found by

searching for the zeros of the secular determinant numerically. The results are presented for

two partially overlapping ranges @f, in figures 3—6. In total, four ‘energy bands’ emerged

for each¢. These bands oscillate with, (for u, > 0 only) and do not cross each other:

although a local minimum of an upper band occurs approximately for the gamea local

maximum of a lower one, there is always a small ‘minigap’ left between any two bands.
Considering results of a semiclassical analysis (Gunsenheiraét994), we can deduce

that when the bound states merge into the continuum-states region (see figure 2), they change

to quasi-bound resonance states.
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As noted in section 2, the range qf, is actually u, € (—oo; ). For £=1,
the lowest-energy band merges into the continuum redigg, at u, = —0.75416F,

E = 0.75581FF (i.e. atE = 15.116A). For¢ = 0, the lowest energy band has not merged
the Csyp continuum region within the investigated -interval (which has stretched down
to u, = —6FEg). The question of whether this band would disappear for negativeven
larger in absolute value or whether there would exist at least one bound state for, any
has remained open.

It is worth noting that we have not found any bound states inBhg.-region of the
(u:,E)-plane, i.e. foru, < —E, although the general analysis of section 2 does not exclude
such a possibility. We will address this issue later in section 5.3.

Another remarkable feature, not inferable from figures 3-6, is that whenever either the
depth of the wellAg or its width 2R increases, the number of energy bands rises and the
minigaps between them decrease at the same time. We have found that this trend is a
general one.

T T T T 1;0 T T 1

— —— exact calculation 7 — —— exact calculation
4 —— semiclassical approximation 4 08 —— semiclassical approx.
—1.0 s 0. 4
08 2 06
=} =
@06 o
[~ o
.8 S 04
§ 04 £
7”02 Q02
& &

KZ i 1 . 3

0.0 0.02 0.04 0.06 0.08 0.1 0.0 0.2 0.4 0.6 0.8 1.0
Effective chemical potential p; [E4] Effective chemical potential y, [Eg]

Figure 7. A comparison of bound-states excitationFigure 8. A comparison of bound-states excitation
energy spectra obtained employing exact solutionsnergy spectra obtained within an exact calculation
of BdG equations (solid lines, bot =0 and (solid lines, both¢ =0 and¢ = 1 symmetries plotted

¢ =1 symmetries plotted together) and employingogether) and within the semiclassical approximation
the semiclassical approximation (broken lines) for(broken lines) for O< u; < u = 1.0Eg. Only the two

0 < us < 0.1Ef. Only the first seven ‘semiclassical’ bands lowest in energy are displayed.

bands are shown.

3.2. Comparison with other calculations

The semiclassical, Andreev or WKBJ approximation is the one most frequently used in
investigating S—N-S junctions. Basically, it consists in writing the quasiparticle amplitudes
in the form (Andreev 1964, Bar-Sagi and Kuper 1974)

ux) \ _ [ ux) .
( (%) ) = < 5C0) )exp(lkpx) (12)
and neglecting the Laplacian af and v with respect tokgV (a thorough discussion of
various formulations of the semiclassical approximation can be found, e.g., in Kobes and

Whitehead (1987) or Ashidat al (1989)). Within this approximation, the eigen-energies
for the system depicted in figure 1 satisfy the equation (Kulik 1969, Furusaki and Tsukada
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1991, Plehret al 1991)

E, E.R
arccos() - = —nmw n=0,12 ... (12)
Ag N Mt

Energy eigenvalues based on equation (12) were presented in Bar-Sagi and Kuper (1974),
Plehnet al (1991) or in Gunsenheimaat al (1994). For the particular system under study
(see the beginning of section 2), the energy spectra obtained within an exact-solutions
framework (figures 3—-6) and within the semiclassical approximation (equation (12)) are
compared in figures 7-8 for two rangesof. Note that exact results for both= 0 and
¢ =1 are presented in each of the figures simultaneously. Figure 7 shows that, as expected
(Kimmel 1974), the semiclassical theory does not provide a good description of bound-
states eigen-energies for small. Nevertheless, it describes fairly accurately the overall
behaviour of theE,,(u,)-curves for largeru,, as demonstrated in figure 8 for the two
lowest energy bands. Evidently, the most significant difference between the semiclassical
and the exact energy eigenvalues is the absence of oscillations in the former. Moreover,
the semiclassical energy bands are ‘degenerate’ with respecaibal appear to represent
an average of the two exact curves.

As noted earlier in the end of section 2, states with< 0 cannot be dealt with within
the semiclassical framework.

H 1 1] ¥
—_ — exact calculation 7
4 [ ——- approximation of Kummel
1.0
@ 0.8
@
G
ot 0.6
g
5 04
=
% 0.2
&0
1L 1 1 1

0.0 0.02 0.04 0.06 0.08 0.1
Effective chemical potential p, {E}]

Figure 9. A comparison of the bound-states excitation energy spectra obtained by solving the
BdG equations exactly (solid lines, both= 0 and¢ = 1 symmetries plotted together) and by
using the approximative formula ofinmel (1974) (broken line).

Kummel (1974) was probably the first one to stress a different character of bound
guasiparticle states with smajl,. He presented approximative analytical expressions
(equations (3.1)—(3.2) in #mmel (1974) and equation (2.6) inlkhmel (1977)) describing
energy levels of low-lying bound states with small. In figure 9, we compare the exact
energy bands with those evaluated using expressiondiofrikel (1974) for our particular
system (when using relevant equations dfnmel (1977), the overall picture remains the
same). It is evident that mmel’s formula describes well the ‘upper’ branch of the lowest
energy band. However, it does not take into account the splitting of the band due to the
guantum numbet. For higherE, the agreement is less satisfactory, which is not surprising
as the approximative formula was derived on condition fha¥ Ao (Kimmel 1974, 1977).
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3.3. Intuitive interpretation of the bound states

The physical mechanism responsible for bound-states formation in S—N-S junctions was
identified as the Andreev reflection of quasiparticles at an N-S interface (Andreev 1966):
the states bound by potential wells in the pairitgx)-potential are basically standing waves

of Andreev-reflected particles and holes. However, such an explanation does not offer a
comprehensive intuitive insight into the phenomenon—it deals solely with the ‘mechanism
of confinement’ of quasiparticles in the middle normal region. Moreover, as noted already
by Kiimmel (1974), not all bound states below the gap can be generated by the Andreev
reflection. We will investigate the role of the Andreev reflection and of other related
processes at N-S interfaces in detail in section 5. Here, we want to focus on presenting an
alternative view of the mechanism of bound-states formation, based on the analogy of an
S—N-S junction with a non-superconducting Sm—N—-Sm planar system.

In the past, semiclassical excitation spectra of bound states in inhomogeneous
superconductors were compared to the spectra of electrons bound in a bapmglotential
square well (Saint-James 1964, Kulik 1969, Bardeen and Johnson 19#2n&l 1974).

We want to present a similar analysis making use ofeka&ctenergy spectra presented in
section 3.1. First, let us investigate physical characteristics of bound states associated with
a single energy band.

Every state characterized by quantum numbers¢ andn can be interpreted as a
mixture of particles and holes. We can estimate the weights of particle-like and hole-like
components by evaluating the integrals

W, =fdx Ju(x)[? W, =/dx lv(x)]2. (13)

Note that alwaysW, + W, = 1 due to the normalization condition for bound states (de
Gennes 1966). Evidently, is the probability that a particular excitation is a particle while
W, is the probability that it is a hole.

Another characteristic feature of an exponentially damped bound state is its penetration
length D. For (u,E)-points inside theAsyysregion, both functions of the fundamental
system decay in the superconducting layerscpt- R with the same rate and, therefoi,
clearly is (cf. equation (9))

R
D=\ -+ 2+ A5—E?
|:\/§ Mt Mt 0

For (u,,E)-points inside theBsyregion, the two basis functions described by equation (7)
decay with different rates, yielding actually two different penetration lengths. It is natural
to consider the longer of them, which means that, insideBhgregion, we have

-1
) (14)

o]

Note that the penetration lengib defined in this way diverges whenever the bound-states
band merges into the continuum states region (cf. figure 2). Plausibly, this is because the
state ceases to be bound at that point.

In figure 10, the ‘probabilitiesW, and W, (defined by equation (13)) together with the
penetration lengtiD (computed from equation (14)) are displayed in a limitgerange for
the lowest even-parity band (i.e. for the lowest of the bands presented in figures 3 and 5).
The general tendencies illustrated by this figure are obeyed by all the bands as well: (i) parts
of the E,, (u,)-curve with negative slopes correspond to predomingpiyicle-like states
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Figure 10. Physical characteristics of the band 6&= 0 symmetry lowest in energy: the
energy spectruma), integrals of the quasiparticle amplitud&, and W, (b) and the length
of penetration of the wave-function into the superconducting layeare displayed within the
samey,-range.

while parts of theE,, (u;)-curve with positive slopes correspondhole-like states(ii) the
penetration lengthD increases withu, for E < Ag and decreases with, for £ > Ao.
When u, — n, both W, and W, approach 1/2, which means that the excitation is with
an equal probability either a particle or a hole, similarly to in the caseEfer Ag (see
equation (8)). For negative,, the excitation is almost exclusively a particle.

These findings are in agreement with the expectations based on a similar analysis
made for spinor wave-functions of @niform superconductor Namely, considering the
definition (4), the excitation spectrum of a homogeneous system can be expressed in terms
of the u,-variable as

Eu () = \J (2 + 42+ k2 — 102+ A3 = /(2 — )2 + A3 (16)
and the BCS ‘coherence factors’ in case of a uniform medium are

1 k2 — 1 k2 —
= /- (1+= = /-(1-= 17
up \/2< + £ ) Vp \/2< E ) 17)
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whereE;, (u,) of equation (16) has been abbreviated to jEistkeepingk, fixed, it is easy
to show that when the excitation energy is decreasing wjthi.e. when the slope of the
Ey (u,)-curve is negativey,; is larger thanv, indicating the predominantly particle-like
character of the excitation. On the other hand, when the slope oFthg:,)-curve is
positive, clearlyv, > u;, and the excitation is mainly a hole.

In what now follows, we shall attempt to provide a simple physical picture of the above
complex process of bound-states formation in an S—N-S junction. One way of looking at
a superconductor is to stress its energy gap and to consider it a special case of a semi-
conductor. The superconducting gap is then interpreted fasbaden regionaround the
effective chemical potential,. Electrons with single-particle energies closg4ahen form
bound states in the central normal-metal layer, because they cannot spread freely into the
outer superconductor/semiconductor layers.

To analyse this picture quantitatively, an energy spectrum of an Sm—N—-Sm junction
(i.e. of a semiconducting analogy of the system depicted in figure 1) will be calculated.
For a fixed effective chemical potential, it is necessary to investigate an auxiliary one-
dimensional system as displayed in figure 11ulf< O, this auxiliary system becomes just
a one-dimensional square potential well (and hence does not changewéthy more).

For a treatment of a similar problem of electron states in semiconducting heterostructures,
the reader is referred to Dingle (1975).

For a given effective chemical potential,, the one-electron energies within the
(u: — Ag; s + Ag) interval form a discrete spectrum of bound states. States with one--
electron energies abovey, correspond tgarticles their excitation energy is

E=¢€— . (18)

Note that this relation is true for negatiye as well as foru, > 0. States with one-electron
energies below u, correspond tdolesand their excitation energg is

E:Mt—é, (19)

Obviously, holes can exist only jf, > 0.

Strictly speaking, it is not possible to describe our auxiliary system with a normal
one-electror (x)-potential: the ‘potential well’ in figure 11 extends just frqup — Ag to
1, + Ao and the electrons can move freely below it. Nevertheless, it is possible to estimate
what the excitation spectrum of this system would look like, employing concepts similar
to those applied in semiconductor heterostructure studies (Detgé1974, Dingle 1975,
Dohler 1981).

Inside the normal region, i.e. fdx| < R, the one-electron wave-functions are

Yyx) =cogyx) < £=0 (even states) (20)
Yyx) =sin(yx) & £=1 (odd states)
and the frequency is
y =+e. (21)
In the semiconducting regions, i.e. for| > R, the one-electron wave-functions are
Pg(x) = exp(—plx]) (22)

and the damping facto$ is determined by the ‘distance’ of the one-electron energy level
€ from the relevant edge of the forbidden region,

B =i+ Ao—€ & €€ (u;m+ Ao) (particles) (23)
B=+ve— i+ Ao €€ (U — Ao i) (holes) (24)
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If u, < Ao, the equation (24) for holes ought to be replaced by
B = e (25)

Matching the wave-functions and their derivatives at the interface provides the secular
equation yielding the one-electron energies(u,). The excitation energieg are then
evaluated relying on equations (18) and (19).

particles

Ao ______
///% A A, %

He

holes

i
T

i
R R e

Figure 11. A schematic depiction of an auxiliary non-superconducting Sm—N-Sm system. The
‘potential well’ extends fotx| > R from u; — Ag to u, + Ao; the forbidden regions are shaded.
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Figure 12. A comparison of energy bands of aFigure 13. A comparison of energy bands of
superconducting S—-N-S system (solid lines) and of a superconducting S-N-S system (solid lines) and
corresponding non-superconducting auxiliary Sm—N-ef a corresponding non-superconducting Sm—N-Sm
Sm system (broken lines) for even-parity bound statesystem (broken lines) for even-parity bound states for
(¢ = 0) for —0.05EF < u; < 0.1EF. 0< ur < pu=10Ef.

The excitation spectrum of this auxiliary Sm—N-Sm system is compared with the exact
spectrum for a proper S—N-S system in figures 12 and 13 for two ranges ddashed
curves with negative slopes correspond to particles in the Sm—N—-Sm junction; dashed curves
with positive slopes correspond to holes (cf. figure 10). Only resulté fo10 are presented;
analogous plots for the other symmetry reveal the same qualitative features.

Let us summarize the basic trends. (i) When one concentrates on comparing particle-
like and hole-like sections of the energy bands separately, excitation spectra of the two
systems are quite similar for small,. This similarity improves whert or u, decreases.

(ii) The most striking difference is the absence of ‘minigaps’ between adjacent bands for
the auxiliary system: particle-like and hole-like bands of the Sm—N-Sm structure cross
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each other in places where the energy gap seems to be restored in the S—N-S junction.
(i) For large u,, the energy bands of the Sm—N-Sm system do not resemble those of a
superconducting S—N-S junction. However, for both systems, the numbers of particle-like
and hole-like branches of the excitation spectra still agree.

The following interpretation of the excitation spectra of S—-N-S junctions has therefore
been reached: basically, the bound states are ‘trapped’ inside the middle normal
region by the same mechanism which determines electronic structure of semiconducting
heterostructures, i.e. the electrons concerned cannot penetrate deep into the superconducting
regions because there are no allowed states available for them. The superconductivity of
the outer layers manifests itself through restoring energy ‘minigaps’: wherever particle-like
and hole-like bands cross in thg,(E)-plane, excitations with opposite, + k, occur (see
equation (4)), making the BCS pairing of quasiparticles with opposite momenta possible
(de Gennes 1966). When the penetration length of the excitations into the superconducting
region increases, the effect of superconductivity is enhanced and the minigaps eventually
get larger, as is observed for large in figure 13.

Although this interpretation is based on investigation of an S—N-S planar junction, we
believe that it is relevant to other geometries as well, because excitation spectra of bound
states of cylindrical geometry (e.g. a vortex in a mixed state of a type-ll superconductor)
exhibit the same basic features as those displayed in this paper in figureSig+ard
Gyorffy 1992).

4. Density of states

So far, only the energy spectf, (i1,) have been investigated. However, a quantity which

is directly related to observation is rather the density of states (DOS). Two types of local
guasiparticle densities of states can be distinguished, namely a local particle-like DOS
ny(x, E),

1
nu(x, E) = ==1IM Gy (x, 53 E) = Y |1y (¥) [ 8(E — Ey) (26)
T n
and a local hole-like DOS,(x, E),

ny(x, E) = —%lm Guu(x, x; E) = ) |0, (0)[*8(E — E,). (27)

In these definitionsG,, (x, x’; E) and G,,(x, x'; E) are diagonal components of ax22-
matrix Green function appropriate to BdG equations (1)asthnds for all possible quantum
states withE,, > 0.

For the bound states investigated in this paper, equations (26) and (27) can be

transformed to
(aEq (/m) B
8’“’ Mi=E

1
”w(x’E)ZE;MZ

wherew is eitheru or v, ¢ is the parity,q abbreviates all quantum numbers except for
w:, and wg is such a value ofu, that E,(igz) = E. The occurrence of the reciprocal
value of the differentiation of the spectral cur¥& (i) in equation (28) means that the
densities of states will have a fine and complicated structure, containing possibly a large
number of singularities (cf. plots &, («,)-curves in figures 3—6). To get physically relevant
information, smoothing is necessary. To give a rough idea of the effect of such a smoothing,
we display a raw untreated local particle-like DOS foe 0 together with a smoothed curve

1
w00 ()12 (28)
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Figure 14. The local particle-like quasiparticle density Figure 15. Smoothed local hole-like (the left-hand half
of statesn,(x, E) in an S-N-S system at =0: of the graph) and particle-like (the right-hand half of
the raw untreated result (solid line) together with ahe graph) quasiparticle densities of states in an S—N—
smoothed curve obtained by convoluting the forme6 system for four choices of the distaneefrom the
with a Gaussian curve (broken line). centre of the middle normal region.

in figure 14. The smoothing was done by convoluting the original spectrum of equation (28)
with a Gaussian curve of a full width at half-maximum equal 1002Er (which is Q04A,
for our system defined by (10)).

The dependences of local densities of bound states op-tw®rdinate are investigated
in figure 15, where both smoothed (x, E£) and smoothed:,(x, E) are shown for four
choices ofx. As is to be expected, local densities of bound states decrease as we are
moving away from the middle, normal, layer. An interesting feature is that the main peak
at E >~ 0.5A, decreases with more quickly then the shoulder &t~ 0.95A,. The position
of the smoothed main peak remaiineedwhenx varies. This is in agreement with previous
semiclassical calculations for the same geometry (Tanaka and Tsukada 1991, &hnaka
al 1991). Interestingly, calculations of the density of bound statesvioriex coreindicate,
in contrast, a strong dependence of the position of the main peak in the local DOS on the
radial distance: (Shoreet al 1989, Klein 1990).

Note that particle-like and hole-like densities are similar but not identical. The most
striking difference occurs foE > Ag—there are hardly any holes above the gap left, in
contrast to what is found in the case of the finite particle-like DOS at those energies. This
is in agreement with the finding of section 3.3 that states alk¥yare mainly particles.

In section 3.2, exact energy bands were compared to those obtained within the
semiclassical approximation. To estimate observable implications of the differences, it
is instructive to compare corresponding densities of states. The semiclassical analysis of
Plehnet al (1991) is based on the following simple analytical expression for the combined
x-integrated density of states:

g(E)Z/ dx [, (x, E) + ny(x, E)]. (29)

Considering equations (29), (28) and the normalization condition for bound states, we find
a formal expression fog (E):
(aE 4 () ) )
3M: He=nEe

g(E) = ZZ

(30)
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Figure 16. A comparison of thex-integrated combined densities of stagg®) in an S—-N-S
system: a smoothed curve calculated using exact solutions (solid line) together with a curve
obtained within the semiclassical approximation (broken line).

A comparison of the combined-integrated DOS calculated using exact solutions of BdG
equations (equation (30) of this paper) and using solutions obtained within the semiclassical
approximation (equation (20) in Plelat al (1991)) is presented in figure 16 for the system
parameters of equation (10).

It is evident that the semiclassical result does not differ significantly from the exact
one. Rapid oscillations of the smoothed exact curve persist only above the main peak, for
energies (BAg < E < Ap. Otherwise, there seems to be a little chance to observe any
deviations from the semiclassical prediction experimentally. Note also thatiffieeence
between the ‘semiclassical DOS’ and the DOS calculated from exact soligidage if
the number of energy bands below the gap is small: in that case, namely, the singularities
in the DOS caused by the zer®H, (u,)/du,)-differentiation are far apart and hence not
smeared out in the process of DOS broadening (cf. figures 3-8 and 14 and equations (28)
and (30)). This implies that the fine DOS structure predicted on the strength of using the
exact solutions of BAG equations could be observed in systems with a smalgap
with a small thickness of the normal layeR 2in accordance with the finding mentioned at
the end of section 3.1. One has to bear in mind, however, that the effect discussed in this
section might be obscured in real S—-N-S structures by other effects not described by our
simple ‘jellium’ model (such as the band structure of the materials involved). A quantitative
assessment of such effects would go far beyond the scope of this paper, however.

A novel feature of our study is the inclusion of bound statbsvethe gap, which
appear for negative:, only. In section 3.3, it was found that the analogy between an
S—N-S junction (described by figure 1) and an Sm—N-Sm junction (shown in figure 11)
works particularly well foru, < 0 (see figure 12). To investigate the analogy a bit more
deeply, we compare densities of states in an S—N-S junction, calculated from equations (26)
and (30), with the same quantities calculated for a non-superconducting Sm—N-Sm system
for E > Ao.

The raw (unsmoothed) quasiparticle local D@3Jx, E) for x = 0 is displayed in
figure 17 for both S—-N-S and Sm—-N-Sm systems, and the combinietbgrated DOS
g(E) is shown in figure 18. It can be seen immediately that the two curves to be compared
closely resemble each other, especially in the case of the combiimgdgrated DOS (E),
where they can hardly be distinguished one from anotheEfor 2A. This fact supports
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Figure 17. The local particle-like quasiparticle DOS Figure 18. Thex-integrated combined DO&(E) in an
n,(x, E) in an S-N-S system (solid line) together withS—N-S system (solid line) together with thentegrated
the local quasiparticle DOS for a square well in a normatombined DOS for a square well in a normilx)-

U (x)-potential (broken line) for energies above the gappotential (broken line) for energies above the gap.

Both curves have been calculated foe= 0.

the interpretation of bound states proposed in section 3.3 in this particular energy range.
(On the other hand, one cannot expect good agreement between densities of states for the
Sm-N-Sm and S—-N-S systems if the enefgys below the gap, as in that case states
with large u,, for which their energy spectra differ significantly, become important—see
figure 13.)

It is necessary to note that, although conceptually bound states above the gap pose a
significant feature, their contribution to the quasiparticle DOS above the gap is very small
in comparison with the contribution of extended states in that energy region (cf. calculated
DOS curves in figure 2 of Plehat al (1991) or in figure 2 of Furusaki and Tsukada
(1991)). Hence, it would be extremely difficult to identify the contribution of the bound
states above the gap relying on DOS measurements in real systems.

5. Scattering of quasiparticles at N-S interfaces

In section 3.3, we gave antuitive interpretation of the mechanism of formation of bound
states in S—N-S junctions. We also noted that it is conventional to regard Andreev reflection
as the key to understand the trapping of quasiparticles inside the normal regions embedded
in a superconductor (Abrikosov 1988). In this section, we intend to present a thorough
analysis of scattering processes at N-S (normal-metal-superconductor) interfaces, taking the
parallel-to-the-interface degree of freedom fully into account. In that respect, our analysis
is a supplement to that of Blondet al (1982), who limited their investigation to a proper
one-dimensional case only.

5.1. Basic considerations

Suppose we are investigating a system composed of a semi-infinite normal metat for

and of a semi-infinite superconductor with a uniform pairing potertial) = Aq for x > 0.

The normalU (x)-potential is zero everywhere. We want to investigate the scattering of an
electron by the N-S interface. Quasiparticles are labelled by their excitation eAesgy

by the effective chemical potential, (see equation (4)). In three dimensions, the incident
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electron is described by (Knmel 1969, Blondeet al 1982)

e = ( ) expizan) expliy + k.. (31)

The frequencyy; is defined by equation (6); th&- and Z-directions are ‘factored-out’
similarly to in equation (2). Recalling figure®(and the discussion at the end of section 2,
it can be seen that such an incoming electron wave can occur only in regiga®and Dnorm.
When this incoming electron interacts with the N-S interface, it is subjected (with various
probabilities) to four distinct processes (Blondsral 1982): normal reflection, Andreev
reflection, normal transmission (called transmission ‘without branch crossing’ in Blonder
et al (1982)) and Andreev transmission (‘with branch crossing’) (see alsmrdel (1969)
for a thorough discussion of group velocities of quasiparticles in the situation concerned).
Depending on the position in the(, E)-plane in figure 2, the outgoing quasiparticles either
propagate to infinity or are exponentially damped.

A normally reflected wave

pom — ( (1) ) exp(—iy1x) explitk,y + k.2)] (32)

can propagate insid€,om- and Dpom-regions—i.e. under the same conditions as the
incident wave can. On the other hand, Andreev reflection

pnd — ( ‘i ) expliyax) explitk,y + k.z)] (33)

occurs only in theDnom-region of the [i,,E)-plane; elsewhere it has to be substituted for
with a function exponentially damped inside the normal metal.

No kind of transmission into the superconducting region is possible Efor Ag,
i.e. inside theAgrregion. Similarly, neither it is possible within thBs,sregion (see
figure 2¢)). Normal transmission giving rise to the wave-function

porm _ ( Zs ) explioyx) explitk,y + k.z)] (34)

can exist in theCs,- and Dgygregions. An Andreev-transmitted wave

pand — ( Z‘(’) ) exp(—iwpx) explitk,y + k.z)] (35)

can propagate only if the corresponding,,E)-point is inside theDg,sregion. The
frequencies,, w1 andw, are defined in equations (6) and (9), coherence factgrsy by
equation (8).

With each of the wave-functions (31)—(35), a probability currg¢rtan be associated,
using the relation (Kmmel 1969, Blondeet al 1982)

7 =2Im[u*Vu —v*Vu]. (36)

One can find easily that the.component (perpendicular to the interface) of the probability
current is positive forjine, 77°™ and 52" while it is negative forj°™ and j4". This
indicates that the wave-functions (32) and (33) really correspond to reflected quasiparticles
while the wave-functions (34) and (35) correspond to transmitted ones. The parallel-to-the-
interface component of the currejitalways has the same sign fgic, j3°™ and j7°™

while it has the opposite sign fgis™ and j2". This reflects an interesting feature of the
Andreev scattering, viz. that the tangential component of the current does change the sign, in
contrast to what occurs in the case of the normal reflection or transmission (for an Andreev
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Figure 19. Changes in the direction of the probability currgntn various scattering events
at the N-S interface (schematic). An arrow with a full dot represents an excitation which is
predominantly a particle; an arrow with a blank circle represents a hole-like excitation.

reflection, this was noted already by Andreev (1964)). Schematically, the changes in the
direction of the currenj in the four processes concerned in a proper three-dimensional case

are depicted in figure 19.
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Figure 20. A schematic depiction of the three particular choices of the effective chemical
potential u, for which the scattering at N-S interfaces is investigated in figures 21-25. For
eachy,, the beginning of the allowed range of energiess marked by a full solid circle while
sections of different scattering regimes are separated by empty circles (see the text for further
details). The division of they(,E)-plane into individual regions, as suggested by thin solid and
broken lines, is the same as in figure 2.

In order to calculate probabilities of the scattering processes investigated, first it is
necessary to match the wave-functions and their derivatives in the normal region,

qunc + aLD%orm + bll'znd
and in the superconducting region

¢ ;orm + dlll';nd
atx = 0 and to calculate the matching coefficieat®, ¢ andd. If any of the propagating
solutions presented in equations (33)—(35) does not exist, it has to be substituted for with a
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correspondingexponentially dampedolution. When the matching coefficients b, ¢ and

d are available, it is possible to calculate theomponents of the probability currenigc,
ghorm jand  jhorm and jAnd associated with the wave-functions presented in equations (31)—
(35). If no solution of a given type propagating in tedirection exists, the-component of

the corresponding curretjtis naturally zero. Finally, the probability of any of the scattering
processes is obtained on dividing the theomponents of the relevant probability currents
by the x-component ofjir. (Blonderet al 1982, Yamamotat al 1991).
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Figure 21. Probabilities of normal reflectio®,, (solid  Figure 22. Probabilities of normal reflectio®, (solid
line) and normal transmissiof, (broken line) of an line), normal transmissiof;,, (broken line), Andreev
electron at an N-S interface fqr, = }L;D. Andreev reflection Ry (dotted line) and Andreev transmission
reflection and Andreev transmission are identically zer@a (chain line) of an electron at an N-S interface for
for any E for this choice ofu,. K =y

In this paper, we want to investigate the energy dependence of the probabilities of normal
reflection R,, Andreev reflectionRa, normal transmissiorf, and Andreev transmission
Ta. Employing different values of the effective chemical potentia) we will be able
to distinguish cases in which only some of the scattering processes are permitted, the
others having identically zero probability. Three different generic situations are depicted
in figure 20 (cf. also figure 2). For example, far= 1V, just two distinct ‘phases’ are
possible: ()Rn # 0, Ra =T, =Ta = 0 if the (u,,E)-point falls in theAsyyregion or in the
Bsygregion; and (ii)Rn # 0, Ty # 0, Ra =Ta = 0 if (u,,E) is in the Csygregion. Similar
phases can be identified for, = 1® andyu, = 1 as well.

The one-dimensional situatiostudied by Blondeeet al (1982) belongs particularly to
the u, = uﬁg)—class (in one dimension, obviously, = u—cf. equation (4)). However,
although Blonderet al (1982) went beyond the semiclassical approximation, their results
are still only approximate ones (see the appendix of their paper). Thus it might be useful
to see how much their conclusions change when exact calculation is employed.

5.2. Particular results

The results for each of the specific caseS) = —0.5A¢, 1 = 0.5A¢ andu® = y, are

displayed in figures 21-25. Similarly to the choice presented in equation (10), we put
Ao = 0.05E, u = 1.0Eg throughout this section. The simplest case of ajl= ;L,(l), is
studied in figure 21. The N-S interface is totally reflective fox \/((uﬁl))z + AS); then

the reflection probabilityR, decreases rapidly, implying a steep riseTgf(as the natural
condition

Ri+Ra+Th+Ta=1
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Figure 23. Probabilities of normal transmissiofy, Figure 24. Probabilities of normal reflectio®,, (solid

(broken line) and Andreev reflectiaky, (dotted line) of line), normal transmissiof;, (broken line), Andreev

an electron at an N-S interface fay = u§3). Normal reflection Ry (dotted line) and Andreev transmission

reflectionR, and Andreev transmissidfy are too small  7a (chain line) of an electron at an N-S interface for

to be visible with thisy-axis scale. Hr = Mfs). Note the changed scaling of tlyeaxis with
respect to that of figure 23.
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Figure 25. Probabilities of Andreev transmissidfy, (chain line) and Andreev reflectioRa
(dotted line) of an electron at an N-S interface figr= ufs). Normal reflectionR,, is too small
to be visible in this scale, and normal transmissi@ars beyond the range of the-axis of this
plot (cf. figure 23).

holds).

The situation for, = 12 is analysed in figure 22. The overall picture is a rather more
complicated one than in figure 21. FBr< Ag, the transmission probabilitiel, and T are
zero identically. IfE < Ag/2, both normal and Andreev reflection are possible—figure 22
demonstrates that the regime of dominant Andreev reflection is gradually switched to the
situation whenR, < Ra. Only one type of scattering process, viz. a normal reflection,
is possible forAg/2 < E < Ag. Transmission processes become available Hor Ag:
Andreev transmission occurs only for energies betwagp2 and J((ufz))2+ AS) (cf.
figure 20), while normal transmission is possible for @y Ag. Similarly to what is seen
in figure 21, the transmission probabiliyy soon becomes larger thak), by an order of
magnitude.

In figures 23-25, the case wherg =Mf3) is investigated. The overall situation
(figure 23) seems to confirm approximative results of Bloreteal (1982) (cf. figure 5 for
Z = 0 in their paper): Andreev reflection dominates for< Ag, then normal transmission
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becomes possible and soon becomes the dominant process. Other processes (neglected by
Blonderet al (1982)) contribute as well; however, their probability is smaller by an order of
magnitude. This is demonstrated in figures 24 and 25 (note the different scales on the vertical
axes of these figures). The normal reflection, although in principle permitted throughout the
energy range, practically vanishes Br> Ag. The Andreev transmission starts to rise very
slowly from T, = 0 at E = Ap and reaches its peak value closeAc= J((M§3))2 + A%),

which is the upper limit of its domain of definition. Interestingly, Andreev reflection also
has a local maximum just before the upper limit of its domain of definitidgh= ;AS)

(figure 25). We have found that these features are generic tawabgtweenu, = A and

w, = n. However, the absolute heights of these local maxim®& ofand Ty decrease with
increasingu, .

5.3. Discussion

The results given in section 5.2 demonstrate that, when a ptbp-dimensional casis
investigated, the manifold of scattering processes at the N-S interface is more diversified
than might be inferred from the one-dimensional study of Blomdat (1982). In particular,

this is true even in absence of a@¥(x)-potential steps (or barrier-simulatingyx)-type
potentials).

For a one-dimensional model, the approximations employed by Blatdd(1982) do
not lead to essential changes with respect to an exact calculation: the differences between
the overall picture presented in figures 23—-25 of this paper on the one hand andide
subsection of figure 5 in Blondet al (1982) on the other are very small in magnitude and
would be difficult to detect experimentally in real superconductors.

Now, let us turn back to the problem of interpretation of bound states in S—N-S junctions.
The general analysis of quasiparticle scattering at N—S junctions together with particular
results shown in section 5.2 indicate that the often-quoted statement that ‘bound states in
S—N-S junctions are formed by Andreev reflection’ is not entirely true, as pointed out
already by Kimmel (1974). Andreev reflections limited just to situations wherg, > E
(cf. figures 2 and 20 and section 5.1). Ror < 0 or for u; < E, a normal reflection is
the only process responsible for binding quasiparticles inside the middle normal region.
Physically, such states describe quasiparticles moving rapidly in the direction parallel to the
N-S interface.

Apart from that, whenever Andreev reflection is possible, normal reflection occurs as
well. To investigate the gradual changeover from a normal-reflection-dominated situation
to an Andreev-reflection-dominated situation, the integrals

1 Ao
Snorm = 7/ dE Rn(E) (37)
Ao Jo

and

1 (Ao
Sand = — / dE RA(E) (38)
Ao Jo

were computed. The results fo = 0.05E andu = 1.0Ef are displayed in figure 26. Itis
interesting to note that the,-range where the normal reflection is significant (approximately
U, < 2Ap) is more or less identical to the range where Sm—N—-Sm energy bands agree with
S—N-S energy bands (cf. figure 12).

Results similar to those presented in this section were obtained by Hurd and Wendin
(1994) who studied a one-dimensional version of our system (cf. figure 1), with different



190 O Sipr ard B L Gyorffy

oy
o

ol
o

e
ES

e
'S

e
o

— normal: [dE R, (E) 7

Reflection probabilities

0.0 g ) ] A )
0.0 0.1 0.2 0.3 0.4 0.5
Effective chemical potential p1, [Ej]

Figure 26. Integrated probabilities of the normal reflectiSipm (solid line) and of the Andreev
reflectionSang (dotted line) of an electron at an N-S interface.

phases¢;, ¢r of the complex pairing potentiah(x) in the left- and right-hand-side
superconductors. They found that disposing of the semiclassical approximation leads to
coexistence of the normal reflection of quasiparticles at the N-S interface alongside the
Andreev one.

The last remark concerns the fact that, in section 3.1, we have not found any bound
states foru, < —E, i.e. in the Bpom-region of the fi,,E)-plane. As already discussed in
section 5.1, no propagating particle can exist with such parameters. Hence, no standing
waves can form for suchu(,E)-values at all in the normal layer, implying that no
‘conventional’ bound states are able to exist in thgm-region. The only remaining choices
would be purely interface-related states. Although we have not proven it rigorously, our
experience indicates that this does not happen.

6. Conclusions

We have investigated excitation spectra of S—N—S junctions and scattering processes at N-S
interfaces using exact solutions of the Bogoliubov—de Gennes equations. Our calculations
demonstrate that whilst the semiclassical approximation accounts correctly for the overall
trends of theE,, (u,) spectral curves, it fails to describe some important details, especially
for low values of the effective chemical potentigl =y — (k2 4+ k2). As might be
expected, such differences as exist between the exact and semiclassical solutions are less
pronounced in the case of the density of states and other integrated quantities.

As a new result, we have shown that bound states exist also for excitation energies
above the gap\g. These states correspond to Iy, i.e. to large parallel-to-the-interface
momenta, and cannot altogether be accounted for within the semiclassical approximation.

Analysing the bound states in S—-N-S junctions we have found that they can be well
described with the help of an analogy with non-superconducting Sm—N-Sm junctions. The
main effect of superconductivity on the bound states consists in opening energy minigaps
wherever Sm—N—-Sm hole-like and particle-like excitation energy bands cross and hybridize.

Finally we demonstrated that whilst the Andreev reflection is the dominant mechanism
in trapping the bound states, it is not the only one. The normal reflection contributes as well
and, for lowy,, its importance increases. For states with< E, the Andreev reflection
is zero and the normal reflection becomes the only phenomenon responsible for generation
of bound states in S—N-S junctions.

In conclusion we wish to stress that the key ideas outlined in this paper for a planar
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geometry are most likely to be valid for other geometries as well. In particular they may
be helpful in discussing bound states in the cylindrical vortices of type-Il superconductors.
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